Suppr超能文献

脊髓性肌萎缩症中的神经胶质细胞:关于非细胞自主机制及治疗意义的推测

Glial Cells in Spinal Muscular Atrophy: Speculations on Non-Cell-Autonomous Mechanisms and Therapeutic Implications.

作者信息

Belančić Andrej, Janković Tamara, Gkrinia Elvira Meni Maria, Kristić Iva, Rajič Bumber Jelena, Rački Valentino, Pilipović Kristina, Vitezić Dinko, Mršić-Pelčić Jasenka

机构信息

Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia.

Independent Researcher, 11741 Athens, Greece.

出版信息

Neurol Int. 2025 Mar 13;17(3):41. doi: 10.3390/neurolint17030041.

Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by homozygous deletions or mutations in the gene, leading to progressive motor neuron degeneration. While SMA has been classically viewed as a motor neuron-autonomous disease, increasing evidence indicates a significant role of glial cells-astrocytes, microglia, oligodendrocytes, and Schwann cells-in the disease pathophysiology. Astrocytic dysfunction contributes to motor neuron vulnerability through impaired calcium homeostasis, disrupted synaptic integrity, and neurotrophic factor deficits. Microglia, through reactive gliosis and complement-mediated synaptic stripping, exacerbate neurodegeneration and neuroinflammation. Oligodendrocytes exhibit impaired differentiation and metabolic support, while Schwann cells display abnormalities in myelination, extracellular matrix composition, and neuromuscular junction maintenance, further compromising motor function. Dysregulation of pathways such as NF-κB, Notch, and JAK/STAT, alongside the upregulation of complement proteins and microRNAs, reinforces the non-cell-autonomous nature of SMA. Despite the advances in SMN-restorative therapies, they do not fully mitigate glial dysfunction. Targeting glial pathology, including modulation of reactive astrogliosis, microglial polarization, and myelination deficits, represents a critical avenue for therapeutic intervention. This review comprehensively examines the multifaceted roles of glial cells in SMA and highlights emerging glia-targeted strategies to enhance treatment efficacy and improve patient outcomes.

摘要

脊髓性肌萎缩症(SMA)是一种由该基因的纯合缺失或突变引起的神经肌肉疾病,导致进行性运动神经元变性。虽然SMA传统上被视为一种运动神经元自主性疾病,但越来越多的证据表明神经胶质细胞(星形胶质细胞、小胶质细胞、少突胶质细胞和雪旺细胞)在该疾病的病理生理学中起重要作用。星形胶质细胞功能障碍通过钙稳态受损、突触完整性破坏和神经营养因子缺乏导致运动神经元易损性增加。小胶质细胞通过反应性胶质增生和补体介导的突触剥脱加剧神经退行性变和神经炎症。少突胶质细胞表现出分化和代谢支持受损,而雪旺细胞在髓鞘形成、细胞外基质组成和神经肌肉接头维持方面表现异常,进一步损害运动功能。NF-κB、Notch和JAK/STAT等信号通路的失调,以及补体蛋白和微小RNA的上调,强化了SMA的非细胞自主性。尽管在SMN恢复疗法方面取得了进展,但它们并不能完全减轻神经胶质功能障碍。针对神经胶质病理,包括调节反应性星形胶质增生、小胶质细胞极化和髓鞘形成缺陷,是治疗干预的关键途径。这篇综述全面研究了神经胶质细胞在SMA中的多方面作用,并强调了新兴的以神经胶质为靶点的策略,以提高治疗效果和改善患者预后。

相似文献

2
Restoration of SMN in Schwann cells reverses myelination defects and improves neuromuscular function in spinal muscular atrophy.
Hum Mol Genet. 2016 Jul 1;25(13):2853-2861. doi: 10.1093/hmg/ddw141. Epub 2016 May 11.
3
Glial cells involvement in spinal muscular atrophy: Could SMA be a neuroinflammatory disease?
Neurobiol Dis. 2020 Jul;140:104870. doi: 10.1016/j.nbd.2020.104870. Epub 2020 Apr 12.
4
SMN-dependent intrinsic defects in Schwann cells in mouse models of spinal muscular atrophy.
Hum Mol Genet. 2014 May 1;23(9):2235-50. doi: 10.1093/hmg/ddt612. Epub 2013 Dec 2.
6
Astrocytes influence the severity of spinal muscular atrophy.
Hum Mol Genet. 2015 Jul 15;24(14):4094-102. doi: 10.1093/hmg/ddv148. Epub 2015 Apr 24.
7
Decreased Motor Neuron Support by SMA Astrocytes due to Diminished MCP1 Secretion.
J Neurosci. 2017 May 24;37(21):5309-5318. doi: 10.1523/JNEUROSCI.3472-16.2017. Epub 2017 Apr 27.
10
Astrocyte-produced miR-146a as a mediator of motor neuron loss in spinal muscular atrophy.
Hum Mol Genet. 2017 Sep 1;26(17):3409-3420. doi: 10.1093/hmg/ddx230.

引用本文的文献

3
Biomarkers in spinal muscular atrophy.
Front Neurol. 2025 Jul 18;16:1636992. doi: 10.3389/fneur.2025.1636992. eCollection 2025.

本文引用的文献

1
Dysregulated balance of D- and L-amino acids modulating glutamatergic neurotransmission in severe spinal muscular atrophy.
Neurobiol Dis. 2025 Apr;207:106849. doi: 10.1016/j.nbd.2025.106849. Epub 2025 Feb 24.
2
Regeneration mechanisms and therapeutic strategies for neuromuscular junctions in aging and diseases.
Neural Regen Res. 2025 Jan 1;20(1):193-194. doi: 10.4103/NRR.NRR-D-23-02055. Epub 2024 Apr 3.
5
Molecular Motors in Myelination and Their Misregulation in Disease.
Mol Neurobiol. 2025 Apr;62(4):4705-4723. doi: 10.1007/s12035-024-04576-9. Epub 2024 Oct 31.
7
Glia move to the foreground.
Nat Neurosci. 2024 Aug;27(8):1427. doi: 10.1038/s41593-024-01735-y.
8
Role of fragile X messenger ribonucleoprotein 1 in the pathophysiology of brain disorders: a glia perspective.
Neurosci Biobehav Rev. 2024 Jul;162:105731. doi: 10.1016/j.neubiorev.2024.105731. Epub 2024 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验