Institute of Anatomy and Cell Biology, Excellence Cluster Cardio-Pulmonary System, University of Giessen Lung Center, Justus-Liebig-University Giessen, Germany.
Am J Physiol Lung Cell Mol Physiol. 2010 May;298(5):L626-36. doi: 10.1152/ajplung.00261.2009. Epub 2009 Dec 18.
Cholinergic bronchoconstriction is mediated by M(2) and M(3) muscarinic receptors (MR). In heart and urinary bladder, MR are linked to caveolin-1 or -3, the structural proteins of caveolae. Caveolae are cholesterol-rich, omega-shaped invaginations of the plasma membrane. They provide a scaffold for multiple G protein receptors and membrane-bound enzymes, thereby orchestrating signaling into the cell interior. Hence, we hypothesized that airway MR signaling pathways are coupled to caveolae as well. To address this issue, we determined the distribution of caveolin isoforms and MR subtype M2R in murine and human airways and investigated protein-protein associations by fluorescence resonance energy transfer (FRET)-confocal laser scanning microscopy (CLSM) analysis in immunolabeled murine tissue sections. Bronchoconstrictor responses of murine bronchi were recorded in lung-slice preparations before and after caveolae disruption by methyl-β-cyclodextrin, with efficiency of this treatment being validated by electron microscopy. KCl-induced bronchoconstriction was unaffected after treatment, demonstrating functional integrity of the smooth muscle. Caveolae disruption decreased muscarine-induced bronchoconstriction in wild-type and abolished it in M2R(-/-) and M3R(-/-) mice. Thus M2R and M3R signaling pathways require intact caveolae. Furthermore, we identified a presumed skeletal and cardiac myocyte-specific caveolin isoform, caveolin-3, in human and murine bronchial smooth muscle and found it to be associated with M2R in situ. In contrast, M2R was not associated with caveolin-1, despite an in situ association of caveolin-1 and caveolin-3 that was detected. Here, we demonstrated that M2R- and M3R-mediated bronchoconstriction is caveolae-dependent. Since caveolin-3 is directly associated with M2R, we suggest caveolin-3 as novel regulator of M2R-mediated signaling.
胆碱能支气管收缩由 M(2) 和 M(3) 毒蕈碱受体 (MR) 介导。在心脏和膀胱中,MR 与 caveolin-1 或 -3 相关联,caveolin-1 或 -3 是 caveolae 的结构蛋白。Caveolae 是富含胆固醇的 omega 形质膜内陷。它们为多个 G 蛋白受体和膜结合酶提供支架,从而协调信号传入细胞内部。因此,我们假设气道 MR 信号通路也与 caveolae 偶联。为了解决这个问题,我们确定了 caveolin 同工型和 MR 亚型 M2R 在小鼠和人呼吸道中的分布,并通过免疫标记的小鼠组织切片中的荧光共振能量转移 (FRET)-共聚焦激光扫描显微镜 (CLSM) 分析研究了蛋白质-蛋白质的相互作用。在 caveolae 被甲基-β-环糊精破坏前后,记录了肺切片制备中小鼠支气管的收缩反应,通过电子显微镜验证了这种处理的效率。处理后 KCl 诱导的支气管收缩不受影响,证明了平滑肌的功能完整性。Caveolae 破坏降低了烟碱诱导的野生型小鼠的支气管收缩,并消除了 M2R(-/-)和 M3R(-/-)小鼠的支气管收缩。因此,M2R 和 M3R 信号通路需要完整的 caveolae。此外,我们在人源和鼠源的支气管平滑肌中鉴定出一种假定的骨骼肌和心肌细胞特异性 caveolin 同工型 caveolin-3,并发现它与原位的 M2R 相关联。相反,尽管原位检测到 caveolin-1 和 caveolin-3 的关联,但 M2R 与 caveolin-1 不相关联。在这里,我们证明了 M2R 和 M3R 介导的支气管收缩依赖于 caveolae。由于 caveolin-3 与 M2R 直接相关联,我们建议 caveolin-3 是 M2R 介导的信号的新型调节因子。