Suppr超能文献

近红外反射光谱法预测普通菜豆(Phaseolus vulgaris L.)完整种子中的蛋白质、淀粉和种子重量。

Near-infrared reflectance spectroscopy predicts protein, starch, and seed weight in intact seeds of common bean ( Phaseolus vulgaris L.).

机构信息

Biology Department, Florida A&M University, Tallahassee, Florida 32307, USA.

出版信息

J Agric Food Chem. 2010 Jan 27;58(2):702-6. doi: 10.1021/jf9019294.

Abstract

The objective of this study was to explore the potential of near-infrared reflectance (NIR) spectroscopy to determine individual seed composition in common bean ( Phaseolus vulgaris L.). NIR spectra and analytical measurements of seed weight, protein, and starch were collected from 267 individual bean seeds representing 91 diverse genotypes. Partial least-squares (PLS) regression models were developed with 61 bean accessions randomly assigned to a calibration data set and 30 accessions assigned to an external validation set. Protein gave the most accurate PLS regression, with the external validation set having a standard error of prediction (SEP) = 1.6%. PLS regressions for seed weight and starch had sufficient accuracy for seed sorting applications, with SEP = 41.2 mg and 4.9%, respectively. Seed color had a clear effect on the NIR spectra, with black beans having a distinct spectral type. Seed coat color did not impact the accuracy of PLS predictions. This research demonstrates that NIR is a promising technique for simultaneous sorting of multiple seed traits in single bean seeds with no sample preparation.

摘要

本研究旨在探索近红外反射光谱(NIR)技术在测定普通菜豆(Phaseolus vulgaris L.)个体种子组成方面的潜力。从 91 个不同基因型的 267 个个体种子中采集了种子重量、蛋白质和淀粉的 NIR 光谱和分析测量值。采用偏最小二乘(PLS)回归模型,将 61 个菜豆种质随机分配到校准数据集,将 30 个种质分配到外部验证集。蛋白质的 PLS 回归最准确,外部验证集的预测标准误差(SEP)=1.6%。种子重量和淀粉的 PLS 回归具有足够的种子分拣应用精度,SEP 分别为 41.2 毫克和 4.9%。种子颜色对 NIR 光谱有明显影响,黑豆具有独特的光谱类型。种皮颜色不影响 PLS 预测的准确性。本研究表明,NIR 是一种很有前途的技术,可用于在单个菜豆种子中同时分拣多个种子特性,无需样品制备。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验