MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
Exp Neurol. 2010 Mar;222(1):51-8. doi: 10.1016/j.expneurol.2009.12.007. Epub 2009 Dec 16.
Rett syndrome is a human neurodevelopmental disorder presenting almost exclusively in female infants; it is the second most common cause of mental retardation in girls, after Down's syndrome. The identification in 1999 that mutation of the methyl-CpG-binding protein 2 (MECP2) gene on the X chromosome causes Rett syndrome has led to a rapid increase in understanding of the neurobiological basis of the disorder. However, much about the functional role of MeCP2, and the cellular phenotype of both patients with Rett syndrome and mutant Mecp2 mouse models, remains unclear. Building on prior work in which we demonstrated that cortical layer 2/3 pyramidal neurons (primarily interhemispheric "callosal projection neurons" (CPN)) have reduced dendritic complexity and smaller somata in Mecp2-null mice, here we investigate whether Mecp2 loss-of-function affects neuronal maturation cell-autonomously and/or non-cell-autonomously by creating physical chimeras. We transplanted Mecp2-null or wild-type (wt) E17-18 cortical neuroblasts and immature neurons from mice constitutively expressing enhanced green fluorescent protein (eGFP) into wt P2-3 mouse cortices to generate chimeric cortices. Mecp2-null layer 2/3 pyramidal neurons in both Mecp2-null and wt neonatal cortices exhibit equivalent reduction in dendritic complexity, and are smaller than transplanted wt neurons, independent of recipient environment. These results indicate that the phenotype of Mecp2-null pyramidal neurons results largely from cell-autonomous mechanisms, with additional non-cell-autonomous effects. Dysregulation of MeCP2 target genes in individual neuronal populations such as CPN is likely centrally involved in Rett syndrome pathogenesis. Our results indicating MeCP2 function in the centrally affected projection neuron population of CPN themselves provide a foundation and motivation for identification of transcriptionally regulated MeCP2 target genes in developing CPN.
雷特综合征是一种几乎仅在女性婴儿中出现的人类神经发育障碍;它是继唐氏综合征之后导致女孩智力迟钝的第二大常见原因。1999 年发现,X 染色体上的甲基-CpG 结合蛋白 2(MECP2)基因突变导致雷特综合征,这使得人们对该疾病的神经生物学基础有了快速的理解。然而,关于 MeCP2 的功能作用,以及雷特综合征患者和突变 Mecp2 小鼠模型的细胞表型,仍有许多不清楚的地方。在此之前,我们的研究表明,皮质层 2/3 锥体神经元(主要是半球间“胼胝体投射神经元”(CPN))的树突复杂性降低,并且 Mecp2 基因缺失的小鼠中神经元胞体较小。在此基础上,我们通过创建物理嵌合体来研究 Mecp2 功能丧失是否会自主和/或非自主地影响神经元成熟。我们将 Mecp2 基因缺失或野生型(wt)E17-18 皮质神经前体细胞和从持续表达增强型绿色荧光蛋白(eGFP)的小鼠中分离的未成熟神经元移植到 wt P2-3 小鼠皮质中,以生成嵌合皮质。Mecp2 基因缺失的皮质层 2/3 锥体神经元在 Mecp2 基因缺失和 wt 新生皮质中表现出相同程度的树突复杂性降低,并且比移植的 wt 神经元小,而与受者环境无关。这些结果表明,Mecp2 基因缺失的锥体神经元表型主要来自自主机制,同时存在额外的非自主机制。CPN 等单个神经元群体中 MeCP2 靶基因的失调可能在雷特综合征发病机制中起着核心作用。我们的研究结果表明,Mecp2 在 CPN 中受影响的投射神经元群体中的功能提供了一个基础和动力,用于鉴定发育中的 CPN 中转录调节的 MeCP2 靶基因。