Institut de Biologie Physico-chimique, CNRS UPR 9073 in association with the Université Paris VII, Paris 75005, France.
J Mol Biol. 2010 Mar 5;396(4):949-66. doi: 10.1016/j.jmb.2009.12.025. Epub 2009 Dec 21.
Motif III in the putative helicases of superfamily 2 is highly conserved in both its sequence and its structural context. It typically consists of the sequence alcohol-alanine-alcohol (S/T-A-S/T). Historically, it was thought to link ATPase activity with a "helicase" strand displacement activity that disrupts RNA or DNA duplexes. DEAD-box proteins constitute the largest family of superfamily 2; they are RNA-dependent ATPases and ATP-dependent RNA binding proteins that, in some cases, are able to disrupt short RNA duplexes. We made mutations of motif III (S-A-T) in the yeast DEAD-box protein Ded1 and analyzed in vivo phenotypes and in vitro properties. Moreover, we made a tertiary model of Ded1 based on the solved structure of Vasa. We used Ded1 because it has relatively high ATPase and RNA binding activities; it is able to displace moderately stable duplexes at a large excess of substrate. We find that the alanine and the threonine in the second and third positions of motif III are more important than the serine, but that mutations of all three residues have strong phenotypes. We purified the wild-type and various mutants expressed in Escherichia coli. We found that motif III mutations affect the RNA-dependent hydrolysis of ATP (k(cat)), but not the affinity for ATP (K(m)). Moreover, mutations alter and reduce the affinity for single-stranded RNA and subsequently reduce the ability to disrupt duplexes. We obtained intragenic suppressors of the S-A-C mutant that compensate for the mutation by enhancing the affinity for ATP and RNA. We conclude that motif III and the binding energy of gamma-PO(4) of ATP are used to coordinate motifs I, II, and VI and the two RecA-like domains to create a high-affinity single-stranded RNA binding site. It also may help activate the beta,gamma-phosphoanhydride bond of ATP.
motif III 在超家族 2 的假定解旋酶中,无论是在序列上还是在结构环境上都高度保守。它通常由序列醇-丙氨酸-醇(S/T-A-S/T)组成。历史上,它被认为将 ATP 酶活性与一种“解旋酶”链位移活性联系起来,这种活性会破坏 RNA 或 DNA 双链。 DEAD 盒蛋白构成了超家族 2 中最大的家族;它们是 RNA 依赖性 ATP 酶和 ATP 依赖性 RNA 结合蛋白,在某些情况下,能够破坏短的 RNA 双链。我们在酵母 DEAD 盒蛋白 Ded1 中对 motif III(S-A-T)进行了突变,并分析了体内表型和体外特性。此外,我们根据已解决的 Vasa 结构构建了 Ded1 的三级模型。我们使用 Ded1,因为它具有相对较高的 ATP 酶和 RNA 结合活性;它能够在底物大量过剩的情况下置换中度稳定的双链。我们发现, motif III 中第二个和第三个位置的丙氨酸和苏氨酸比丝氨酸更重要,但三个残基的突变都有很强的表型。我们在大肠杆菌中表达并纯化了野生型和各种突变体。我们发现, motif III 突变影响依赖于 RNA 的 ATP 水解(k(cat)),但不影响对 ATP 的亲和力(K(m))。此外,突变改变并降低了对单链 RNA 的亲和力,随后降低了破坏双链的能力。我们获得了 S-A-C 突变体的基因内抑制子,这些抑制子通过增强对 ATP 和 RNA 的亲和力来补偿突变。我们得出结论, motif III 和 ATP 的 γ-PO(4)的结合能用于协调 motif I、II 和 VI 以及两个 RecA 样结构域,以创建一个高亲和力的单链 RNA 结合位点。它也可能有助于激活 ATP 的β,γ-磷酸酐键。