Department of Regulated Laboratories, Division of Regulated Activities, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, USA.
Chem Res Toxicol. 2010 Jan;23(1):26-36. doi: 10.1021/tx900192u.
Organophosphorus (OP) nerve agents that inhibit acetylcholinesterase (AChE; EC 3.1.1.7) function in the nervous system, causing acute intoxication. If untreated, death can result. Inhibited AChE can be reactivated by oximes, antidotes for OP exposure. However, OP intoxication caused by the nerve agent tabun (GA) is particularly resistant to oximes, which poorly reactivate GA-inhibited AChE. In an attempt to develop a rational strategy for the discovery and design of novel reactivators with lower toxicity and increased efficacy in reactivating GA-inhibited AChE, we developed the first in silico pharmacophore model for binding affinity of GA-inhibited AChE from a set of 11 oximes. Oximes were analyzed for stereoelectronic profiles and three-dimensional quantitative structure-activity relationship pharmacophores using ab initio quantum chemical and pharmacophore generation methods. Quantum chemical methods were sequentially used from semiempirical AM1 to hierarchical ab initio calculations to determine the stereoelectronic properties of nine oximes exhibiting affinity for binding to GA-inhibited AChE in vivo. The calculated stereoelectronic properties led us to develop the in silico pharmacophore model using CATALYST methodology. Specific stereoelectronic profiles including the distance between bisquarternary nitrogen atoms of the pyridinium ring in the oximes, hydrophilicity, surface area, nucleophilicity of the oxime oxygen, and location of the molecular orbitals on the isosurfaces have important roles for potencies for reactivating GA-inhibited AChE. The in silico pharmacophore model of oxime affinity for binding to GA-inhibited AChE was found to require a hydrogen bond acceptor, a hydrogen bond donor at the two terminal regions, and an aromatic ring in the central region of the oximes. The model was found to be well-correlated (R = 0.9) with experimental oxime affinity for binding to GA-inhibited AChE. Additional stereoelectronic features relating activity with the location of molecular orbitals and weak electrostatic potential field over the aromatic rings were found to be consistent with the pharmacophore model. These results provided the first predictive pharmacophore model of oxime affinity for binding toward GA-inhibited AChE. The model may be useful for virtual screening of compound libraries to discover and/or custom synthesize more efficacious and less toxic reactivators that may be useful for GA intoxication.
有机磷(OP)神经毒剂抑制乙酰胆碱酯酶(AChE;EC 3.1.1.7)在神经系统中的功能,导致急性中毒。如果不治疗,可能会导致死亡。被肟类化合物(解毒剂)可以重新激活被抑制的 AChE,肟类化合物是 OP 暴露的解毒剂。然而,神经毒剂塔崩(GA)引起的中毒对肟类化合物特别具有抵抗力,肟类化合物对 GA 抑制的 AChE 的重新激活作用很差。为了开发一种合理的策略,以发现和设计具有更低毒性和更高效力的新型再激活剂,用于重新激活 GA 抑制的 AChE,我们从一组 11 种肟类化合物中为 GA 抑制的 AChE 的结合亲和力开发了第一个基于计算机的药效基团模型。使用从头算量子化学和药效基团生成方法,对肟类化合物进行了立体电子分布分析和三维定量构效关系药效基团研究。使用半经验 AM1 到分层从头算计算的量子化学方法,对九种具有体内结合 GA 抑制的 AChE 亲和力的肟类化合物的立体电子性质进行了测定。计算出的立体电子性质使我们能够使用 CATALYST 方法开发基于计算机的药效基团模型。特定的立体电子分布,包括肟类化合物中吡啶鎓环的双季铵氮原子之间的距离、亲水性、表面积、肟氧的亲核性以及分子轨道在等表面上的位置,对于重新激活 GA 抑制的 AChE 的效力具有重要作用。发现肟类化合物与 GA 抑制的 AChE 结合的基于计算机的药效基团模型需要一个氢键受体、两个末端区域的氢键供体和肟类化合物中心区域的一个芳环。该模型与实验肟类化合物与 GA 抑制的 AChE 结合的亲和力具有很好的相关性(R = 0.9)。发现与活性相关的附加立体电子特征与分子轨道的位置和芳环上的弱静电势能场一致,符合药效基团模型。这些结果提供了肟类化合物与 GA 抑制的 AChE 结合亲和力的第一个预测性药效基团模型。该模型可能有助于虚拟筛选化合物库,以发现和/或定制合成更有效和毒性更低的再激活剂,这些再激活剂可能对 GA 中毒有用。