Suppr超能文献

被有机磷神经毒剂抑制的乙酰胆碱酯酶重活化剂。

Reactivators of acetylcholinesterase inhibited by organophosphorus nerve agents.

机构信息

Equipe de Chimie Bio-Organique, COBRA-CNRS UMR 6014 & FR 3038, Rue Lucien Tesnière, 76131 Mont-Saint-Aignan, France.

出版信息

Acc Chem Res. 2012 May 15;45(5):756-66. doi: 10.1021/ar2002864. Epub 2012 Feb 23.

Abstract

Since the September 11, 2001, terrorist attacks in the United States, the specter of a chemical threat against civilian populations has renewed research interest in chemical warfare agents, their mechanisms of action, and treatments that reverse their effects. In this Account, we focus specifically on organophosphorus nerve agents (OPNAs). Although some OPNAs are used as pest control, the most toxic chemicals in this class are used as chemical warfare agents in armed conflicts. The acute toxicity of OPNAs results from the irreversible inhibition of acetylcholinesterase (AChE, EC 3.1.1.7) via the formation of a covalent P-O bond at the serine hydroxyl group in the enzyme active site. AChE breaks down the neurotransmitter acetylcholine at neuronal synapses and neuromuscular junctions. The irreversible inhibition of AChE causes the neurotransmitter to accumulate in the synaptic cleft, leading to overstimulation of cholinergic receptors, seizures, respiratory arrest, and death. The current treatment for OPNA poisoning combines an antimuscarinic drug (e.g., atropine), an anticonvulsant drug (e.g., diazepam), and an AChE reactivator of the pyridinium aldoxime family (pralidoxime, trimedoxime, obidoxime, HI-6, HLö-7). Because of their high nucleophilicity, oximes can displace the phosphyl group from the catalytic serine, thus restoring the enzyme's catalytic activity. During 50 years of research in the reactivator field, researchers have synthesized and tested numerous structural modifications of monopyridinium oximes and bispyridinium oximes. In the past decade, medicinal chemists have focused their research on the more efficient bispyridinium reactivators, but all known reactivators have several drawbacks. First, due to their permanent positive charge, they do not cross the blood-brain barrier (BBB) efficiently and do not readily reactivate AChE in the central nervous system. Second, no single oxime is efficient against a wide variety of OPNAs. Third, oximes cannot reactivate "aged" AChE. This Account summarizes recent strategies for the development of AChE reactivators capable of crossing the BBB. The use of nanoparticulate transport and inhibition of P-glycoprotein efflux pumps improves BBB transport of these AChE reactivators. Chemical modifications that increased the lipophilicity of the pyridinium aldoximes, the addition of a fluorine atom and the replacement of a pyridyl ring with a dihydropyridyl moiety, enhances BBB permeability. The glycosylation of pyridine aldoximes facilitates increased BBB penetration via the GLUT-1 transport system. The development of novel uncharged reactivators that can move efficiently across the BBB represents one of the most promising of these new strategies.

摘要

自 2001 年 9 月 11 日美国发生恐怖袭击以来,针对平民的化学威胁幽灵再次引发了人们对化学战剂及其作用机制以及逆转其影响的治疗方法的研究兴趣。在本说明中,我们专门关注有机磷神经毒剂 (OPNAs)。尽管有些 OPNAs 被用作害虫防治剂,但该类中最有毒的化学品被用作武装冲突中的化学战剂。OPNAs 的急性毒性是由于在酶活性部位丝氨酸羟基上形成共价 P-O 键,不可逆地抑制乙酰胆碱酯酶 (AChE,EC 3.1.1.7) 所致。AChE 在神经元突触和神经肌肉接头处分解神经递质乙酰胆碱。AChE 的不可逆抑制导致神经递质在突触裂隙中积累,导致胆碱能受体过度刺激、癫痫发作、呼吸停止和死亡。目前对 OPNAs 中毒的治疗包括使用抗毒蕈碱药物(如阿托品)、抗惊厥药物(如地西泮)和吡啶醛肟家族的 AChE 重激活剂(吡咯烷酮肟、三甲肟、奥碘羟肟、HI-6、HLö-7)。由于其高亲核性,肟可以将膦酰基从催化丝氨酸上取代,从而恢复酶的催化活性。在 50 年的重激活剂研究中,研究人员合成并测试了许多单吡啶醛肟和双吡啶醛肟的结构修饰。在过去的十年中,药物化学家将研究重点放在更有效的双吡啶醛肟重激活剂上,但所有已知的重激活剂都有几个缺点。首先,由于其永久正电荷,它们不能有效地穿过血脑屏障 (BBB),也不容易在中枢神经系统中重新激活 AChE。其次,没有单一的肟能有效地对抗各种 OPNAs。第三,肟不能重新激活“老化”的 AChE。本说明总结了最近开发能够穿过 BBB 的 AChE 重激活剂的策略。使用纳米颗粒转运和抑制 P-糖蛋白外排泵可改善这些 AChE 重激活剂的 BBB 转运。增加吡啶醛肟的亲脂性、添加氟原子和用二氢吡啶部分取代吡啶环的化学修饰可增强 BBB 通透性。通过 GLUT-1 转运系统,吡啶醛肟的糖基化可促进 BBB 穿透。开发能够有效穿过 BBB 的新型不带电荷的重激活剂是这些新策略中最有前途的策略之一。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验