Suppr超能文献

G 蛋白偶联受体:基于靶标的计算机筛选。

G Protein-Coupled Receptors: target-based in silico screening.

机构信息

EPIX Pharmaceuticals Ltd, Ramat Gan 52521, Israel.

出版信息

Curr Pharm Des. 2009;15(35):4049-68. doi: 10.2174/138161209789824821.

Abstract

In silico (or virtual) screening has become a common practice in current computer-aided drug design efforts. However, application to hit discovery in the G Protein-Coupled Receptors (GPCRs) arena was until recently hampered by the paucity of crystal structures available for this important class of pharmaceutical targets, forcing practitioners in the field to rely on GPCR models derived either ab initio or through homology modeling approaches. In this work we describe the EPIX in silico screening workflow which consists of the following stages: (1) Target modeling; (2) Preparation of screening library; (3) Docking; (4) Binding mode selection; (5) Scoring; (6) Consensus scoring and (7) Selection of virtual hits. This workflow was applied to the virtual screening of 13 GPCRs (5 biogenic amine receptors, 5 peptide receptors, 1 lipid receptor, 1 purinergic receptor and 1 cannabinoid receptor). Hit rates vary between 4% and 21% with higher hit rates usually obtained for biogenic amines and lower hits rates for peptide receptors. These data are analyzed in the context of the available experimental information (i.e., mutational data), the model (i.e., binding site location, and type of interactions) and the screening library. Specific examples are discussed in more detail as well as the future directions and challenges of this approach to in silico screening.

摘要

计算机辅助药物设计中的虚拟筛选已成为一种常见的实践。然而,在 G 蛋白偶联受体(GPCR)领域的命中发现应用直到最近才受到可用晶体结构的缺乏的阻碍,迫使该领域的从业者依赖于从头开始或通过同源建模方法获得的 GPCR 模型。在这项工作中,我们描述了 EPIX 虚拟筛选工作流程,该流程包括以下阶段:(1)靶标建模;(2)筛选库的准备;(3)对接;(4)结合模式选择;(5)评分;(6)共识评分;(7)虚拟命中的选择。该工作流程应用于对 13 个 GPCR(5 个生物胺受体、5 个肽受体、1 个脂质受体、1 个嘌呤能受体和 1 个大麻素受体)的虚拟筛选。命中率在 4%到 21%之间变化,生物胺的命中率通常较高,而肽受体的命中率较低。这些数据根据可用的实验信息(即突变数据)、模型(即结合位点位置和相互作用类型)和筛选库进行分析。还详细讨论了具体示例,以及该方法对虚拟筛选的未来方向和挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验