Evers Andreas, Hessler Gerhard, Matter Hans, Klabunde Thomas
Aventis Pharma Deutschland GmbH, Ein Unternehmen der Sanofi-Aventis Gruppe, Chemical Sciences, Drug Design, 65926 Frankfurt am Main, Germany.
J Med Chem. 2005 Aug 25;48(17):5448-65. doi: 10.1021/jm050090o.
In this paper, we compare protein- and ligand-based virtual screening techniques for identifying the ligands of four biogenic amine-binding G-protein coupled receptors (GPCRs). For the screening of the virtual compound libraries, we used (1) molecular docking into GPCR homology models, (2) ligand-based pharmacophore and Feature Tree models, (3) three-dimensional (3D)-similarity searches, and (4) statistical methods [partial least squares (PLS) and partial least squares discriminant analysis (PLS-DA) models] based on two-dimensional (2D) molecular descriptors. The comparison of the different methods in retrieving known antagonists from virtual libraries shows that in our study the ligand-based pharmacophore-, Feature Tree-, and 2D quantitative structure-activity relationship (QSAR)-based screening techniques provide enrichment factors that are higher than those provided by molecular docking into the GPCR homology models. Nevertheless, the hit rates achieved when docking with GOLD and ranking the ligands with GoldScore (up to 60% among the top-ranked 1% of the screened databases) are still satisfying. These results suggest that docking into GPCR homology models can be a useful approach for lead finding by virtual screening when either little or no information about the active ligands is available.
在本文中,我们比较了基于蛋白质和配体的虚拟筛选技术,以识别四种生物胺结合G蛋白偶联受体(GPCR)的配体。对于虚拟化合物库的筛选,我们使用了:(1)分子对接至GPCR同源模型;(2)基于配体的药效团和特征树模型;(3)三维(3D)相似性搜索;以及(4)基于二维(2D)分子描述符的统计方法[偏最小二乘法(PLS)和偏最小二乘判别分析(PLS-DA)模型]。从虚拟库中检索已知拮抗剂时不同方法的比较表明,在我们的研究中,基于配体的药效团、特征树和二维定量构效关系(QSAR)的筛选技术所提供的富集因子高于分子对接至GPCR同源模型所提供的富集因子。然而,使用GOLD进行对接并使用GoldScore对配体进行排名时所达到的命中率(在筛选数据库排名前1%的配体中高达60%)仍然令人满意。这些结果表明,当关于活性配体的信息很少或没有时,对接至GPCR同源模型可以成为通过虚拟筛选寻找先导物的一种有用方法。