Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA 92093-0407, USA.
IEEE Trans Image Process. 2010 Mar;19(3):722-35. doi: 10.1109/TIP.2009.2038834. Epub 2009 Dec 18.
In this paper, we propose a generalized linear model for video packet loss visibility that is applicable to different group-of-picture structures. We develop the model using three subjective experiment data sets that span various encoding standards (H.264 and MPEG-2), group-of-picture structures, and decoder error concealment choices. We consider factors not only within a packet, but also in its vicinity, to account for possible temporal and spatial masking effects. We discover that the factors of scene cuts, camera motion, and reference distance are highly significant to the packet loss visibility. We apply our visibility model to packet prioritization for a video stream; when the network gets congested at an intermediate router, the router is able to decide which packets to drop such that visual quality of the video is minimally impacted. To show the effectiveness of our visibility model and its corresponding packet prioritization method, experiments are done to compare our perceptual-quality-based packet prioritization approach with existing Drop-Tail and Hint-Track-inspired cumulative-MSE-based prioritization methods. The result shows that our prioritization method produces videos of higher perceptual quality for different network conditions and group-of-picture structures. Our model was developed using data from high encoding-rate videos, and designed for high-quality video transported over a mostly reliable network; however, the experiments show the model is applicable to different encoding rates.
在本文中,我们提出了一种适用于不同图像组结构的视频分组丢失可见性的广义线性模型。我们使用三个主观实验数据集来开发模型,这些数据集涵盖了各种编码标准(H.264 和 MPEG-2)、图像组结构和解码器错误隐藏选择。我们不仅考虑了一个分组内的因素,还考虑了其附近的因素,以考虑可能的时间和空间掩蔽效应。我们发现,场景切换、相机运动和参考距离等因素对分组丢失可见性有很大影响。我们将我们的可见性模型应用于视频流的分组优先级排序;当网络在中间路由器处拥塞时,路由器能够决定丢弃哪些分组,以使视频的视觉质量受到最小的影响。为了展示我们的可见性模型及其相应的分组优先级排序方法的有效性,我们进行了实验来比较我们基于感知质量的分组优先级排序方法与现有的基于 Drop-Tail 和 Hint-Track 启发的累积均方误差的优先级排序方法。结果表明,我们的优先级排序方法在不同的网络条件和图像组结构下产生了更高感知质量的视频。我们的模型是使用高编码率视频的数据开发的,设计用于在大多数可靠的网络上传输高质量的视频;然而,实验表明该模型适用于不同的编码率。