Suppr超能文献

多通道盲分离和解卷积在文档分析中的应用。

Multichannel blind separation and deconvolution of images for document analysis.

机构信息

Istituto di Scienza e Tecnologie dell'Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy.

出版信息

IEEE Trans Image Process. 2010 Apr;19(4):912-25. doi: 10.1109/TIP.2009.2038814. Epub 2009 Dec 18.

Abstract

In this paper, we apply Bayesian blind source separation (BSS) from noisy convolutive mixtures to jointly separate and restore source images degraded through unknown blur operators, and then linearly mixed. We found that this problem arises in several image processing applications, among which there are some interesting instances of degraded document analysis. In particular, the convolutive mixture model is proposed for describing multiple views of documents affected by the overlapping of two or more text patterns. We consider two different models, the interchannel model, where the data represent multispectral views of a single-sided document, and the intrachannel model, where the data are given by two sets of multispectral views of the recto and verso side of a document page. In both cases, the aim of the analysis is to recover clean maps of the main foreground text, but also the enhancement and extraction of other document features, such as faint or masked patterns. We adopt Bayesian estimation for all the unknowns and describe the typical local correlation within the individual source images through the use of suitable Gibbs priors, accounting also for well-behaved edges in the images. This a priori information is particularly suitable for the kind of objects depicted in the images treated, i.e., homogeneous texts in homogeneous background, and, as such, is capable to stabilize the ill-posed, inverse problem considered. The method is validated through numerical and real experiments that are representative of various real scenarios.

摘要

在本文中,我们应用贝叶斯盲源分离(BSS)从噪声卷积混合中分离和恢复源图像,这些源图像通过未知的模糊算子退化,并进行线性混合。我们发现这个问题出现在几个图像处理应用中,其中有些是退化文档分析的有趣实例。特别是,卷积混合模型被提出用于描述受两个或多个文本模式重叠影响的多视图文档。我们考虑了两种不同的模型,即通道间模型,其中数据表示单个文档的多光谱视图;通道内模型,其中数据由文档正面和反面的两组多光谱视图给出。在这两种情况下,分析的目的是恢复主要前景文本的干净图,但也要增强和提取其他文档特征,如微弱或掩蔽的模式。我们对所有未知量采用贝叶斯估计,并通过使用合适的吉布斯先验来描述单个源图像内的典型局部相关性,同时考虑图像中的良好边缘。这种先验信息特别适合于所处理的图像中描绘的那种对象,即同质背景中的同质文本,并且可以稳定考虑的病态、逆问题。该方法通过数值和实际实验得到验证,这些实验代表了各种实际场景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验