Suppr超能文献

多视频流的竞争均衡比特率分配。

Competitive equilibrium bitrate allocation for multiple video streams.

机构信息

Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0508, USA.

出版信息

IEEE Trans Image Process. 2010 Apr;19(4):1009-21. doi: 10.1109/TIP.2009.2038777. Epub 2009 Dec 18.

Abstract

We consider the problem of simultaneous bitrate allocation for multiple video streams. Current methods for multiplexing video streams often rely on identifying the relative complexity of the video streams to improve the combined overall quality. In such methods, not all the videos benefit from the multiplexing process. Typically, the quality of high motion videos is improved at the expense of a reduction in the quality of low motion videos. In our approach, we use a competitive equilibrium allocation of bitrate to improve the quality of all the video streams by finding trades between videos across time. A central controller collects rate-distortion information from each video user and makes a joint bitrate allocation decision. Each user encodes and transmits his video at the allocated bitrate through a shared channel. The proposed method uses information about not only the differing complexity of the video streams at every moment but also the differing complexity of each stream over time. Using the competitive equilibrium bitrate allocation approach for multiple video streams, simulation results show that all the video streams perform better or at least as well as with individual encoding. The results of this research will be useful both for ad hoc networks that employ a cluster head model and for cellular architectures.

摘要

我们考虑了多个视频流的同时比特率分配问题。当前用于多路复用视频流的方法通常依赖于识别视频流的相对复杂性,以提高组合的整体质量。在这种方法中,并非所有视频都受益于多路复用过程。通常,高运动视频的质量会提高,而低运动视频的质量会降低。在我们的方法中,我们使用竞争均衡的比特率分配来通过在视频之间进行交易来提高所有视频流的质量。中央控制器从每个视频用户收集率失真信息,并做出联合的比特率分配决策。每个用户在分配的比特率下通过共享信道对其视频进行编码和传输。所提出的方法不仅使用了每个时刻视频流的不同复杂度的信息,而且还使用了每个流随时间的不同复杂度的信息。使用多视频流的竞争均衡比特率分配方法,仿真结果表明,所有视频流的性能都优于或至少与单独编码一样好。这项研究的结果对于采用簇头模型的 ad hoc 网络和蜂窝架构都将非常有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验