Department of Electrical and Computer Engineering, National University of Singapore, singapore.
IEEE Trans Image Process. 2010 Apr;19(4):1087-96. doi: 10.1109/TIP.2009.2038765. Epub 2009 Dec 18.
Subspace learning techniques for face recognition have been widely studied in the past three decades. In this paper, we study the problem of general subspace-based face recognition under the scenarios with spatial misalignments and/or image occlusions. For a given subspace derived from training data in a supervised, unsupervised, or semi-supervised manner, the embedding of a new datum and its underlying spatial misalignment parameters are simultaneously inferred by solving a constrained l1 norm optimization problem, which minimizes the l1 error between the misalignment-amended image and the image reconstructed from the given subspace along with its principal complementary subspace. A byproduct of this formulation is the capability to detect the underlying image occlusions. Extensive experiments on spatial misalignment estimation, image occlusion detection, and face recognition with spatial misalignments and/or image occlusions all validate the effectiveness of our proposed general formulation for misalignment-robust face recognition.
子空间学习技术在过去三十年中已经在人脸识别中得到了广泛的研究。在本文中,我们研究了在存在空间失配和/或图像遮挡的情况下基于一般子空间的人脸识别问题。对于从监督、无监督或半监督方式的训练数据中得到的给定子空间,通过求解约束 l1 范数优化问题同时推断新数据点的嵌入及其潜在的空间失配参数,该优化问题最小化了经过失配修正的图像与从给定子空间及其主补子空间重建的图像之间的 l1 误差。这种公式的一个副产品是能够检测潜在的图像遮挡。我们的方法在空间失配估计、图像遮挡检测以及存在空间失配和/或图像遮挡的人脸识别方面的广泛实验验证了我们提出的用于抗失配人脸识别的通用公式的有效性。