Department of Molecular Biology and Biochemistry, University of California-Irvine, 2236 McGaugh Hall, Irvine, California 92697-3900, USA.
Acc Chem Res. 2010 Mar 16;43(3):475-84. doi: 10.1021/ar900254x.
The (Mo)-nitrogenase is a complex metalloenzyme that catalyzes the key step in the global nitrogen cycle, the reduction of atmospheric dinitrogen (N(2)) to bioavailable ammonia (NH(3)), at the iron-molybdenum cofactor (FeMoco) site of its molybdenum-iron (MoFe) protein component. Despite the fundamental significance of biological nitrogen fixation and extensive studies over the past decades, the catalytic mechanism of nitrogenase has not been deciphered. One major challenge for the mechanistic study of nitrogenase is the redox versatility of its FeMoco center. The ability of FeMoco to shuttle between oxidation states in a rapid and unsynchronized manner results in a mixed oxidation state of the cofactor population during turnover. The substrate and the various intermediates can only interact with the FeMoco site in a transient manner, so it is extremely difficult to capture any substrate- or intermediate-bound form of nitrogenase for the direct examination of substrate-enzyme interactions during catalysis. In this Account, we describe the approach of identifying a partially "defective" nitrogenase homologue, one with a slower turnover rate, as a means of overcoming this problem. The NifEN protein complex serves as an ideal candidate for this purpose. It is an alpha(2)beta(2)-heterotetramer that contains cluster-binding sites homologous to those found in the MoFe protein: the "P-cluster site" at the interface of the alphabeta-subunit dimer, which accommodates a [Fe(4)S(4)]-type cluster; and the "FeMoco site" within the alpha-subunit, which houses an all-iron homologue to the FeMoco. Moreover, NifEN mimics the MoFe protein in catalysis: it is capable of reducing acetylene (C(2)H(2)) and azide (N(3)(-)) in an ATP- and iron (Fe) protein-dependent manner. However, NifEN is unable to reduce proton (H(+)) and N(2), and it is an inefficient enzyme with a restricted electron flux during the turnover. The extremely slow turnover rate of NifEN and the possible "synchronization" of its FeMoco homologue at a certain oxidation level permit the observation of a new S = 1/2 EPR signal upon turnover of C(2)H(2) by NifEN, which is analogous to the signal reported for a MoFe protein variant upon turnover of the same substrate. This result is exciting, because it suggests the possibility of naturally enriching a C(2)H(2)-bound form of NifEN for the successful crystallization of the first intermediate-bound nitrogenase homologue. On the other hand, the fact that NifEN represents a partially "defective" homologue of the MoFe protein makes it a promising mutational platform on which a functional MoFe protein equivalent may be reconstructed by introducing the missing features of MoFe protein step-by-step into NifEN. Such a strategy allows us to define the function of each feature and address questions such as the following: What is the function of P-cluster in catalysis? Are Mo and homocitrate the essential constituents of the cofactor in N(2) reduction? How does substrate accessibility affect the reactivity of the enzyme? This homologue approach could complement the mechanistic analysis of the nitrogenase MoFe protein, and information derived from both approaches will help achieve the ultimate goal of solving the riddle of biological nitrogen fixation.
固氮酶(Mo)-是一种复杂的金属酶,它在全球氮循环中催化关键步骤,即在其钼铁(MoFe)蛋白成分的铁钼辅因子(FeMoco)位点上将大气中的二氮分子(N2)还原为生物可用的氨(NH3)。尽管生物固氮具有根本意义,并且在过去几十年中进行了广泛的研究,但固氮酶的催化机制仍未被破解。氮酶机制研究的一个主要挑战是其 FeMoco 中心的氧化还原多功能性。FeMoco 能够快速且不同步地在氧化态之间穿梭,导致在周转过程中辅因子群体的混合氧化态。底物和各种中间体会以瞬态方式仅与 FeMoco 位点相互作用,因此极难捕获任何与底物或中间产物结合的氮酶形式,无法直接检查催化过程中的底物-酶相互作用。在本报告中,我们描述了鉴定一种部分“有缺陷”的氮酶同源物的方法,这种方法具有较慢的周转率,作为克服此问题的一种手段。NifEN 蛋白复合物是实现此目的的理想候选物。它是一种 alpha(2)beta(2)-异四聚体,包含与 MoFe 蛋白中发现的那些同源的簇结合位点:位于 alpha-beta-亚基二聚体界面上的“P-簇位点”,可容纳 [Fe(4)S(4)]-型簇;和位于 alpha-亚基内的“FeMoco 位点”,其中容纳了 FeMoco 的全铁类似物。此外,NifEN 在催化中模拟 MoFe 蛋白:它能够以依赖于 ATP 和铁(Fe)蛋白的方式还原乙炔(C2H2)和叠氮化物(N3(-))。然而,NifEN 不能还原质子(H(+))和 N2,并且在周转过程中是一种效率低下的酶,电子通量受限。NifEN 极慢的周转率和其 FeMoco 同源物在特定氧化水平上的“同步化”可能会导致在 NifEN 周转 C2H2 时观察到新的 S = 1/2 EPR 信号,这类似于报告的 MoFe 蛋白变体在相同底物周转时的信号。这一结果令人兴奋,因为它表明有可能自然富集富含 C2H2 的 NifEN 形式,从而成功结晶出第一个中间产物结合的氮酶同源物。另一方面,NifEN 代表 MoFe 蛋白的部分“有缺陷”同源物,这使其成为一个有前途的突变平台,可以通过逐步将 MoFe 蛋白的缺失特征引入 NifEN 来重建功能等同的 MoFe 蛋白。这种策略使我们能够定义每个特征的功能,并解决以下问题:P-簇在催化中的作用是什么?钼和同型柠檬酸是 N2 还原中辅因子的必需成分吗?底物可及性如何影响酶的反应性?这种同源物方法可以补充对氮酶 MoFe 蛋白的机制分析,并且从这两种方法中获得的信息将有助于实现解决生物固氮之谜的最终目标。