San Jose Research Center, Hitachi Global Storage Technologies, 3403 Yerba Buena Road, San Jose, California 95135, USA.
Nano Lett. 2010 Jan;10(1):341-6. doi: 10.1021/nl903690y.
The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor's thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.
纳米级分辨率的磁场检测是扫描探针磁强计、生物传感和磁存储的一个基本挑战。目前基于巨磁电阻和隧道磁电阻的技术在小尺寸上受到热磁噪声和自旋扭矩不稳定性的限制。这些限制不适用于由高迁移率半导体或金属薄膜组成的霍尔传感器,但传感器厚度内的磁通量损失极大地限制了空间分辨率和灵敏度。在这里,我们展示了石墨烯异常磁阻器件,它结合了霍尔效应和增强的几何磁阻,灵敏度可与最先进的传感器相媲美,但在传感器表面的感测层厚度可达到亚纳米级。背栅极提供了控制传感器特性的能力,可以减轻材料特性固有的变化以及在纳米尺度上不可避免的制造引起的器件间变异性。