文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

p53 家族中 DNA 结合特异性和寡聚化性质的保守性。

Conservation of DNA-binding specificity and oligomerisation properties within the p53 family.

机构信息

MRC Laboratory of Molecular Biology, Cambridge CB20QH, UK.

出版信息

BMC Genomics. 2009 Dec 23;10:628. doi: 10.1186/1471-2164-10-628.


DOI:10.1186/1471-2164-10-628
PMID:20030809
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2807882/
Abstract

BACKGROUND: Transcription factors activate their target genes by binding to specific response elements. Many transcription factor families evolved from a common ancestor by gene duplication and subsequent divergent evolution. Members of the p53 family, which play key roles in cell-cycle control and development, share conserved DNA binding and oligomerisation domains but exhibit distinct functions. In this study, the molecular basis of the functional divergence of related transcription factors was investigated. RESULTS: We characterised the DNA-binding specificity and oligomerisation properties of human p53, p63 and p73, as well as p53 from other organisms using novel biophysical approaches. All p53 family members bound DNA cooperatively as tetramers with high affinity. Despite structural differences in the oligomerisation domain, the dissociation constants of the tetramers was in the low nanomolar range for all family members, indicating that the strength of tetramerisation was evolutionarily conserved. However, small differences in the oligomerisation properties were observed, which may play a regulatory role. Intriguingly, the DNA-binding specificity of p53 family members was highly conserved even for evolutionarily distant species. Additionally, DNA recognition was only weakly affected by CpG methylation. Prediction of p53/p63/p73 binding sites in the genome showed almost complete overlap between the different homologs. CONCLUSION: Diversity of biological function of p53 family members is not reflected in differences in sequence-specific DNA binding. Hence, additional specificity factors must exist, which allowed the acquisition of novel functions during evolution while preserving original roles.

摘要

背景:转录因子通过与特定的反应元件结合来激活其靶基因。许多转录因子家族通过基因复制和随后的分歧进化从一个共同的祖先进化而来。p53 家族成员在细胞周期控制和发育中发挥关键作用,它们共享保守的 DNA 结合和寡聚化结构域,但表现出不同的功能。在这项研究中,研究了相关转录因子功能分歧的分子基础。

结果:我们使用新的生物物理方法对人 p53、p63 和 p73 以及来自其他生物体的 p53 的 DNA 结合特异性和寡聚化特性进行了表征。所有 p53 家族成员都以高亲和力作为四聚体协同结合 DNA。尽管在寡聚化结构域存在结构差异,但所有家族成员的四聚体解离常数均在纳摩尔范围内,表明四聚化的强度在进化上是保守的。然而,在寡聚化特性方面观察到了微小的差异,这可能发挥了调节作用。有趣的是,p53 家族成员的 DNA 结合特异性即使在进化距离较远的物种中也高度保守。此外,CpG 甲基化对 DNA 识别的影响较弱。对基因组中 p53/p63/p73 结合位点的预测表明,不同同源物之间几乎完全重叠。

结论:p53 家族成员的生物学功能多样性并没有反映在序列特异性 DNA 结合的差异上。因此,必须存在其他特异性因子,这使得它们在进化过程中获得新的功能,同时保留了原始的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/4cebc6eb05aa/1471-2164-10-628-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/ffae9d8e692a/1471-2164-10-628-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/9937124d467e/1471-2164-10-628-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/d6ecc9eaa1ba/1471-2164-10-628-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/b0218e25cd47/1471-2164-10-628-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/f64d1cc2a904/1471-2164-10-628-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/78f43de8fc30/1471-2164-10-628-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/4cebc6eb05aa/1471-2164-10-628-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/ffae9d8e692a/1471-2164-10-628-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/9937124d467e/1471-2164-10-628-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/d6ecc9eaa1ba/1471-2164-10-628-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/b0218e25cd47/1471-2164-10-628-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/f64d1cc2a904/1471-2164-10-628-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/78f43de8fc30/1471-2164-10-628-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/301e/2807882/4cebc6eb05aa/1471-2164-10-628-7.jpg

相似文献

[1]
Conservation of DNA-binding specificity and oligomerisation properties within the p53 family.

BMC Genomics. 2009-12-23

[2]
Differential regulation of MDR1 transcription by the p53 family members. Role of the DNA binding domain.

J Biol Chem. 2005-4-8

[3]
Tracing the protectors path from the germ line to the genome.

Proc Natl Acad Sci U S A. 2010-8-9

[4]
Therapeutic prospects for p73 and p63: rising from the shadow of p53.

Drug Resist Updat. 2008

[5]
Structural evolution of p53, p63, and p73: implication for heterotetramer formation.

Proc Natl Acad Sci U S A. 2009-10-20

[6]
p63 and p73, the ancestors of p53.

Cold Spring Harb Perspect Biol. 2010-5-19

[7]
p53 Family isoforms.

Curr Pharm Biotechnol. 2007-12

[8]
p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress.

Cell Death Differ. 2006-6

[9]
p63 and p73: roles in development and tumor formation.

Mol Cancer Res. 2004-7

[10]
From p63 to p53 across p73.

FEBS Lett. 2001-2-16

引用本文的文献

[1]
Network Theory Analysis of Allosteric Drug-Rescue Mechanisms in the Tumor Suppressor Protein p53 Y220C Mutant.

Int J Mol Sci. 2025-7-17

[2]
Nucleosome binding by TP53, TP63, and TP73 is determined by the composition, accessibility, and helical orientation of their binding sites.

Genome Res. 2025-3-18

[3]
Oocyte death is triggered by the stabilization of TAp63α dimers in response to cisplatin.

Cell Death Dis. 2024-11-7

[4]
Mapping Interactions of the Intrinsically Disordered C-Terminal Regions of Tetrameric p53 by Segmental Isotope Labeling and NMR.

Biochemistry. 2022-12-6

[5]
Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53.

Front Mol Biosci. 2022-8-25

[6]
SUMOylation inhibition overcomes proteasome inhibitor resistance in multiple myeloma.

Blood Adv. 2023-2-28

[7]
ΔNp63 is a pioneer factor that binds inaccessible chromatin and elicits chromatin remodeling.

Epigenetics Chromatin. 2021-4-17

[8]
Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay.

Genes (Basel). 2021-2-15

[9]
MCL1 binds and negatively regulates the transcriptional function of tumor suppressor p73.

Cell Death Dis. 2020-11-3

[10]
The multiple mechanisms that regulate p53 activity and cell fate.

Nat Rev Mol Cell Biol. 2019-4

本文引用的文献

[1]
Structural evolution of p53, p63, and p73: implication for heterotetramer formation.

Proc Natl Acad Sci U S A. 2009-10-20

[2]
The expanding universe of p53 targets.

Nat Rev Cancer. 2009-10

[3]
Conformational stability and activity of p73 require a second helix in the tetramerization domain.

Cell Death Differ. 2009-9-18

[4]
Probing the functional impact of sequence variation on p53-DNA interactions using a novel microsphere assay for protein-DNA binding with human cell extracts.

PLoS Genet. 2009-5

[5]
Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers.

J Biol Chem. 2009-5-15

[6]
Structural biology of the p53 tumour suppressor.

Curr Opin Struct Biol. 2009-4

[7]
Effects of CpG methylation on recognition of DNA by the tumour suppressor p53.

J Mol Biol. 2009-2-13

[8]
14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers.

Nucleic Acids Res. 2008-10

[9]
Noncanonical DNA motifs as transactivation targets by wild type and mutant p53.

PLoS Genet. 2008-6-27

[10]
Characterization of genome-wide p53-binding sites upon stress response.

Nucleic Acids Res. 2008-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索