Barth Andreas S, Aiba Takeshi, Halperin Victoria, DiSilvestre Deborah, Chakir Khalid, Colantuoni Carlo, Tunin Richard S, Dimaano Victoria Lea, Yu Wayne, Abraham Theodore P, Kass David A, Tomaselli Gordon F
Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA.
Circ Cardiovasc Genet. 2009 Aug;2(4):371-8. doi: 10.1161/CIRCGENETICS.108.832345. Epub 2009 May 15.
Cardiac electromechanical dyssynchrony causes regional disparities in workload, oxygen consumption, and myocardial perfusion within the left ventricle. We hypothesized that such dyssynchrony also induces region-specific alterations in the myocardial transcriptome that are corrected by cardiac resynchronization therapy (CRT).
Adult dogs underwent left bundle branch ablation and right atrial pacing at 200 bpm for either 6 weeks (dyssynchronous heart failure, n=12) or 3 weeks, followed by 3 weeks of resynchronization by biventricular pacing at the same pacing rate (CRT, n=10). Control animals without left bundle branch block were not paced (n=13). At 6 weeks, RNA was isolated from the anterior and lateral left ventricular (LV) walls and hybridized onto canine-specific 44K microarrays. Echocardiographically, CRT led to a significant decrease in the dyssynchrony index, while dyssynchronous heart failure and CRT animals had a comparable degree of LV dysfunction. In dyssynchronous heart failure, changes in gene expression were primarily observed in the anterior LV, resulting in increased regional heterogeneity of gene expression within the LV. Dyssynchrony-induced expression changes in 1050 transcripts were reversed by CRT to levels of nonpaced hearts (false discovery rate <5%). CRT remodeled transcripts with metabolic and cell signaling function and greatly reduced regional heterogeneity of gene expression as compared with dyssynchronous heart failure.
Our results demonstrate a profound effect of electromechanical dyssynchrony on the regional cardiac transcriptome, causing gene expression changes primarily in the anterior LV wall. CRT corrected the alterations in gene expression in the anterior wall, supporting a global effect of biventricular pacing on the ventricular transcriptome that extends beyond the pacing site in the lateral wall.
心脏机电不同步会导致左心室内工作负荷、氧消耗及心肌灌注的区域差异。我们推测这种不同步也会引起心肌转录组的区域特异性改变,而心脏再同步治疗(CRT)可纠正这些改变。
成年犬接受左束支消融,并以200次/分钟的频率进行右心房起搏,持续时间为6周(不同步心力衰竭组,n = 12)或3周,随后以相同起搏频率进行双心室起搏再同步治疗3周(CRT组,n = 10)。未发生左束支传导阻滞的对照动物未进行起搏(n = 13)。6周时,从左心室前壁和侧壁分离RNA,并与犬特异性44K微阵列杂交。超声心动图检查显示,CRT导致不同步指数显著降低,而不同步心力衰竭组和CRT组的左心室功能障碍程度相当。在不同步心力衰竭组中,基因表达变化主要出现在左心室前壁,导致左心室内基因表达的区域异质性增加。CRT将1050个转录本中不同步诱导的表达变化逆转至非起搏心脏的水平(错误发现率<5%)。与不同步心力衰竭相比,CRT重塑了具有代谢和细胞信号功能的转录本,并大大降低了基因表达的区域异质性。
我们的结果表明,机电不同步对区域心脏转录组有深远影响,主要导致左心室前壁的基因表达变化。CRT纠正了前壁基因表达的改变,支持双心室起搏对心室转录组的整体作用,这种作用超出了侧壁起搏部位。