Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239, USA.
J Biol Chem. 2010 Feb 26;285(9):6327-36. doi: 10.1074/jbc.M109.074633. Epub 2009 Dec 23.
Copper-transporting ATPase ATP7B is essential for human copper homeostasis and normal liver function. ATP7B has six N-terminal metal-binding domains (MBDs) that sense cytosolic copper levels and regulate ATP7B. The mechanism of copper sensing and signal integration from multiple MBDs is poorly understood. We show that MBDs communicate and that this communication determines the oxidation state and conformation of the entire N-terminal domain of ATP7B (N-ATP7B). Mutations of copper-coordinating Cys to Ala in any MBD (2, 3, 4, or 6) change the N-ATP7B conformation and have distinct functional consequences. Mutating MBD2 or MBD3 causes Cys oxidation in other MBDs and loss of copper binding. In contrast, mutation of MBD4 and MBD6 does not alter the redox status and function of other sites. Our results suggest that MBD2 and MBD3 work together to regulate access to other metal-binding sites, whereas MBD4 and MBD6 receive copper independently, downstream of MBD2 and MBD3. Unlike Ala substitutions, the Cys-to-Ser mutation in MBD2 preserves the conformation and reduced state of N-ATP7B, suggesting that hydrogen bonds contribute to interdomain communications. Tight coupling between MBDs suggests a mechanism by which small changes in individual sites (induced by copper binding or mutation) result in stabilization of distinct conformations of the entire N-ATP7B and altered exposure of sites for interactions with regulatory proteins.
铜转运 ATP 酶 ATP7B 对于人体铜稳态和正常肝功能至关重要。ATP7B 有六个 N 端金属结合域(MBD),可感知细胞溶质铜水平并调节 ATP7B。多 MBD 从铜感应和信号整合的机制知之甚少。我们表明 MBD 可以相互通讯,并且这种通讯决定了 ATP7B 整个 N 端结构域(N-ATP7B)的氧化状态和构象。任何 MBD(2、3、4 或 6)中铜配位 Cys 突变为 Ala 都会改变 N-ATP7B 的构象,并具有不同的功能后果。突变 MBD2 或 MBD3 会导致其他 MBD 中的 Cys 氧化和铜结合丧失。相比之下,突变 MBD4 和 MBD6 不会改变其他位点的氧化还原状态和功能。我们的结果表明,MBD2 和 MBD3 一起工作以调节对其他金属结合位点的访问,而 MBD4 和 MBD6 则独立于 MBD2 和 MBD3 接收铜。与 Ala 取代不同,MBD2 中的 Cys-to-Ser 突变保留了 N-ATP7B 的构象和还原状态,表明氢键有助于结构域间通讯。MBD 之间的紧密偶联表明了一种机制,即单个位点(由铜结合或突变引起)的微小变化导致整个 N-ATP7B 的稳定不同构象,并改变与调节蛋白相互作用的位点的暴露。