Suppr超能文献

如何在景观和流域管理中推进决策支持系统?对四个不同决策支持系统的比较分析得出的经验教训。

How can we make progress with decision support systems in landscape and river basin management? Lessons learned from a comparative analysis of four different decision support systems.

机构信息

Department Computational Landscape Ecology, UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany.

出版信息

Environ Manage. 2010 Dec;46(6):834-49. doi: 10.1007/s00267-009-9417-2. Epub 2009 Dec 24.

Abstract

This article analyses the benefits and shortcomings of the recently developed decision support systems (DSS) FLUMAGIS, Elbe-DSS, CatchMODS, and MedAction. The analysis elaborates on the following aspects: (i) application area/decision problem, (ii) stakeholder interaction/users involved, (iii) structure of DSS/model structure, (iv) usage of the DSS, and finally (v) most important shortcomings. On the basis of this analysis, we formulate four criteria that we consider essential for the successful use of DSS in landscape and river basin management. The criteria relate to (i) system quality, (ii) user support and user training, (iii) perceived usefulness and (iv) user satisfaction. We can show that the availability of tools and technologies for DSS in landscape and river basin management is good to excellent. However, our investigations indicate that several problems have to be tackled. First of all, data availability and homogenisation, uncertainty analysis and uncertainty propagation and problems with model integration require further attention. Furthermore, the appropriate and methodological stakeholder interaction and the definition of 'what end-users really need and want' have been documented as general shortcomings of all four examples of DSS. Thus, we propose an iterative development process that enables social learning of the different groups involved in the development process, because it is easier to design a DSS for a group of stakeholders who actively participate in an iterative process. We also identify two important lines of further development in DSS: the use of interactive visualization tools and the methodology of optimization to inform scenario elaboration and evaluate trade-offs among environmental measures and management alternatives.

摘要

本文分析了最近开发的决策支持系统 (DSS) FLUMAGIS、Elbe-DSS、CatchMODS 和 MedAction 的优点和缺点。分析阐述了以下几个方面:(i)应用领域/决策问题,(ii)利益相关者交互/涉及的用户,(iii)DSS 结构/模型结构,(iv)DSS 的使用,最后(v)最重要的缺点。在此基础上,我们制定了四个我们认为对景观和流域管理中成功使用 DSS 至关重要的标准。这些标准与(i)系统质量、(ii)用户支持和用户培训、(iii)感知有用性和(iv)用户满意度有关。我们可以表明,景观和流域管理中 DSS 的工具和技术可用性良好到优秀。然而,我们的调查表明,还需要解决几个问题。首先,数据可用性和均质化、不确定性分析和不确定性传播以及模型集成问题需要进一步关注。此外,适当的和方法上的利益相关者交互以及“最终用户真正需要和想要什么”的定义被记录为所有四个 DSS 示例的一般缺点。因此,我们提出了一个迭代开发过程,使参与开发过程的不同群体能够进行社会学习,因为对于积极参与迭代过程的一组利益相关者来说,设计 DSS 更容易。我们还确定了 DSS 进一步发展的两个重要方向:交互式可视化工具的使用和优化方法,以告知情景阐述并评估环境措施和管理替代方案之间的权衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验