Suppr超能文献

植物质膜 H+-ATPase 的 C 端结构域调控:我们究竟了解多少?

Regulation of the plant plasma membrane H+-ATPase by its C-terminal domain: what do we know for sure?

机构信息

Center for Plant Molecular Biology - Plant Physiology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany.

出版信息

Eur J Cell Biol. 2010 Feb-Mar;89(2-3):145-51. doi: 10.1016/j.ejcb.2009.10.015. Epub 2009 Dec 24.

Abstract

The plant plasma membrane H(+)-ATPase is kept at a low activity level by its C-terminal domain, the inhibitory function of which is thought to be mediated by two regions (region I and II) interacting with cytoplasmic domains essential for the catalytic cycle. The activity of the enzyme is well known to be regulated by 14-3-3 proteins, the association of which requires phosphorylation of the penultimate H(+)-ATPase residue, but can be abolished by phosphorylation of residues close-by. The current knowledge about H(+)-ATPase regulation is briefly summed up here, combined with data that query some of the above statements. Expression of various C-terminal deletion constructs of PMA2, a H(+)-ATPase isoform from Nicotiana plumbaginifolia, in yeast indicates that three regions, which do not correspond to regions I or II, contribute to autoinhibition. Their individual and combined action can be abolished by (mimicking) phosphorylation of three threonine residues located within or close to these regions. With respect to the wild-type PMA2, mimicking phosphorylation of two of these residues increases enzyme activity. However, constitutive activation of wild-type PMA2 requires 14-3-3 association. Altogether, the data suggest that regulation of the plant H(+)-ATPase occurs in progressive steps, mediated by several protein kinases and phosphatases, thus allowing gradual as well as fine-tuned adjustment of its activity. Moreover, mating-based split ubiquitin assays indicate a complex interplay between the C-terminal domain and the rest of the enzyme. Notably, their tight contact does not seem to be the cause of the inactive state of the enzyme.

摘要

植物质膜 H(+)-ATP 酶的 C 端结构域使其保持低活性,其抑制功能被认为是通过与细胞质结构域相互作用介导的,这些细胞质结构域对于催化循环至关重要。该酶的活性众所周知受到 14-3-3 蛋白的调节,其结合需要 H(+)-ATP 酶倒数第二位残基的磷酸化,但可以通过附近残基的磷酸化而被废除。这里简要总结了 H(+)-ATP 酶调节的当前知识,并结合了质疑上述一些陈述的数据。在酵母中表达来自 Nicotiana plumbaginifolia 的 H(+)-ATP 酶同工型 PMA2 的各种 C 端缺失构建体表明,三个不对应于区域 I 或 II 的区域有助于自动抑制。它们的单独和组合作用可以通过模拟位于这些区域内或附近的三个苏氨酸残基的磷酸化来消除。对于野生型 PMA2,模拟这些残基中的两个的磷酸化会增加酶活性。然而,野生型 PMA2 的组成性激活需要 14-3-3 结合。总的来说,这些数据表明植物 H(+)-ATP 酶的调节是通过几个蛋白激酶和磷酸酶介导的逐步进行的,从而允许其活性逐渐以及精细地调节。此外,基于交配的分裂泛素测定表明 C 端结构域和酶的其余部分之间存在复杂的相互作用。值得注意的是,它们的紧密接触似乎不是酶无活性状态的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验