Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium.
J Biol Chem. 2011 May 27;286(21):18474-82. doi: 10.1074/jbc.M110.211953. Epub 2011 Apr 11.
The plant plasma membrane H(+)-ATPase is regulated by an auto-inhibitory C-terminal domain that can be displaced by phosphorylation of the penultimate residue, a Thr, and the subsequent binding of 14-3-3 proteins. By mass spectrometric analysis of plasma membrane H(+)-ATPase isoform 2 (PMA2) isolated from Nicotiana tabacum plants and suspension cells, we identified a new phosphorylation site, Thr-889, in a region of the C-terminal domain upstream of the 14-3-3 protein binding site. This residue was mutated into aspartate or alanine, and the mutated H(+)-ATPases expressed in the yeast Saccharomyces cerevisiae. Unlike wild-type PMA2, which could replace the yeast H(+)-ATPases, the PMA2-Thr889Ala mutant did not allow yeast growth, whereas the PMA2-Thr889Asp mutant resulted in improved growth and increased H(+)-ATPase activity despite reduced phosphorylation of the PMA2 penultimate residue and reduced 14-3-3 protein binding. To determine whether the regulation taking place at Thr-889 was independent of phosphorylation of the penultimate residue and 14-3-3 protein binding, we examined the effect of combining the PMA2-Thr889Asp mutation with mutations of other residues that impair phosphorylation of the penultimate residue and/or binding of 14-3-3 proteins. The results showed that in yeast, PMA2 Thr-889 phosphorylation could activate H(+)-ATPase if PMA2 was also phosphorylated at its penultimate residue. However, binding of 14-3-3 proteins was not required, although 14-3-3 binding resulted in further activation. These results were confirmed in N. tabacum suspension cells. These data define a new H(+)-ATPase activation mechanism that can take place without 14-3-3 proteins.
植物质膜 H(+)-ATP 酶受自身抑制的 C 端结构域调控,该结构域可被倒数第二位残基 Thr 的磷酸化和随后的 14-3-3 蛋白结合所置换。通过对从烟草植物和悬浮细胞中分离的质膜 H(+)-ATP 酶同工型 2(PMA2)进行质谱分析,我们在靠近 14-3-3 蛋白结合位点的 C 端结构域上游区域鉴定到一个新的磷酸化位点 Thr-889。将该残基突变为天冬氨酸或丙氨酸,并在酵母酿酒酵母中表达突变的 H(+)-ATP 酶。与能够取代酵母 H(+)-ATP 酶的野生型 PMA2 不同,PMA2-Thr889Ala 突变体不能使酵母生长,而 PMA2-Thr889Asp 突变体尽管 PMA2 倒数第二位残基的磷酸化和 14-3-3 蛋白结合减少,但仍导致生长改善和 H(+)-ATP 酶活性增加。为了确定 Thr-889 处的调控是否独立于倒数第二位残基的磷酸化和 14-3-3 蛋白结合,我们研究了将 PMA2-Thr889Asp 突变与其他残基的突变相结合的影响,这些突变会损害倒数第二位残基的磷酸化和/或 14-3-3 蛋白的结合。结果表明,在酵母中,如果 PMA2 也在其倒数第二位残基处磷酸化,PMA2 Thr-889 的磷酸化可以激活 H(+)-ATP 酶。然而,不需要 14-3-3 蛋白结合,尽管 14-3-3 结合会导致进一步激活。这些结果在烟草悬浮细胞中得到了证实。这些数据定义了一种新的 H(+)-ATP 酶激活机制,该机制无需 14-3-3 蛋白即可发生。