Suppr超能文献

植物质膜 H+-ATP 酶 C 端自身抑制结构域中的一个磷酸化作用可使该酶激活,而不需要调节 14-3-3 蛋白。

A phosphorylation in the c-terminal auto-inhibitory domain of the plant plasma membrane H+-ATPase activates the enzyme with no requirement for regulatory 14-3-3 proteins.

机构信息

Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium.

出版信息

J Biol Chem. 2011 May 27;286(21):18474-82. doi: 10.1074/jbc.M110.211953. Epub 2011 Apr 11.

Abstract

The plant plasma membrane H(+)-ATPase is regulated by an auto-inhibitory C-terminal domain that can be displaced by phosphorylation of the penultimate residue, a Thr, and the subsequent binding of 14-3-3 proteins. By mass spectrometric analysis of plasma membrane H(+)-ATPase isoform 2 (PMA2) isolated from Nicotiana tabacum plants and suspension cells, we identified a new phosphorylation site, Thr-889, in a region of the C-terminal domain upstream of the 14-3-3 protein binding site. This residue was mutated into aspartate or alanine, and the mutated H(+)-ATPases expressed in the yeast Saccharomyces cerevisiae. Unlike wild-type PMA2, which could replace the yeast H(+)-ATPases, the PMA2-Thr889Ala mutant did not allow yeast growth, whereas the PMA2-Thr889Asp mutant resulted in improved growth and increased H(+)-ATPase activity despite reduced phosphorylation of the PMA2 penultimate residue and reduced 14-3-3 protein binding. To determine whether the regulation taking place at Thr-889 was independent of phosphorylation of the penultimate residue and 14-3-3 protein binding, we examined the effect of combining the PMA2-Thr889Asp mutation with mutations of other residues that impair phosphorylation of the penultimate residue and/or binding of 14-3-3 proteins. The results showed that in yeast, PMA2 Thr-889 phosphorylation could activate H(+)-ATPase if PMA2 was also phosphorylated at its penultimate residue. However, binding of 14-3-3 proteins was not required, although 14-3-3 binding resulted in further activation. These results were confirmed in N. tabacum suspension cells. These data define a new H(+)-ATPase activation mechanism that can take place without 14-3-3 proteins.

摘要

植物质膜 H(+)-ATP 酶受自身抑制的 C 端结构域调控,该结构域可被倒数第二位残基 Thr 的磷酸化和随后的 14-3-3 蛋白结合所置换。通过对从烟草植物和悬浮细胞中分离的质膜 H(+)-ATP 酶同工型 2(PMA2)进行质谱分析,我们在靠近 14-3-3 蛋白结合位点的 C 端结构域上游区域鉴定到一个新的磷酸化位点 Thr-889。将该残基突变为天冬氨酸或丙氨酸,并在酵母酿酒酵母中表达突变的 H(+)-ATP 酶。与能够取代酵母 H(+)-ATP 酶的野生型 PMA2 不同,PMA2-Thr889Ala 突变体不能使酵母生长,而 PMA2-Thr889Asp 突变体尽管 PMA2 倒数第二位残基的磷酸化和 14-3-3 蛋白结合减少,但仍导致生长改善和 H(+)-ATP 酶活性增加。为了确定 Thr-889 处的调控是否独立于倒数第二位残基的磷酸化和 14-3-3 蛋白结合,我们研究了将 PMA2-Thr889Asp 突变与其他残基的突变相结合的影响,这些突变会损害倒数第二位残基的磷酸化和/或 14-3-3 蛋白的结合。结果表明,在酵母中,如果 PMA2 也在其倒数第二位残基处磷酸化,PMA2 Thr-889 的磷酸化可以激活 H(+)-ATP 酶。然而,不需要 14-3-3 蛋白结合,尽管 14-3-3 结合会导致进一步激活。这些结果在烟草悬浮细胞中得到了证实。这些数据定义了一种新的 H(+)-ATP 酶激活机制,该机制无需 14-3-3 蛋白即可发生。

相似文献

4
The two major plant plasma membrane H+-ATPases display different regulatory properties.
J Biol Chem. 2001 Mar 9;276(10):7017-22. doi: 10.1074/jbc.M007740200. Epub 2000 Nov 15.
6
Regulation of the plant plasma membrane H+-ATPase by its C-terminal domain: what do we know for sure?
Eur J Cell Biol. 2010 Feb-Mar;89(2-3):145-51. doi: 10.1016/j.ejcb.2009.10.015. Epub 2009 Dec 24.
7
Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 proteins converts a dimer into a hexamer.
Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11675-80. doi: 10.1073/pnas.0504498102. Epub 2005 Aug 4.
10
Function and regulation of the two major plant plasma membrane H+-ATPases.
Ann N Y Acad Sci. 2003 Apr;986:198-203. doi: 10.1111/j.1749-6632.2003.tb07160.x.

引用本文的文献

3
Phosphorylation of plasma membrane H-ATPase Thr881 participates in light-induced stomatal opening.
Nat Commun. 2024 Feb 20;15(1):1194. doi: 10.1038/s41467-024-45248-5.
5
Production of Recombinant Glycoproteins in Nicotiana tabacum BY-2 Suspension Cells.
Methods Mol Biol. 2022;2480:81-88. doi: 10.1007/978-1-0716-2241-4_5.
6
A plant plasma-membrane H-ATPase promotes yeast TORC1 activation via its carboxy-terminal tail.
Sci Rep. 2021 Feb 26;11(1):4788. doi: 10.1038/s41598-021-83525-1.
8
The Oligomeric State of the Plasma Membrane H⁺-ATPase from .
Molecules. 2019 Mar 8;24(5):958. doi: 10.3390/molecules24050958.
9
cross-linking supports a head-to-tail mechanism for regulation of the plant plasma membrane P-type H-ATPase.
J Biol Chem. 2018 Nov 2;293(44):17095-17106. doi: 10.1074/jbc.RA118.003528. Epub 2018 Sep 14.

本文引用的文献

2
A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein.
J Biol Chem. 2010 Mar 5;285(10):7344-50. doi: 10.1074/jbc.M109.096123. Epub 2010 Jan 12.
3
Regulation of the plant plasma membrane H+-ATPase by its C-terminal domain: what do we know for sure?
Eur J Cell Biol. 2010 Feb-Mar;89(2-3):145-51. doi: 10.1016/j.ejcb.2009.10.015. Epub 2009 Dec 24.
5
A proteomic and phosphoproteomic analysis of Oryza sativa plasma membrane and vacuolar membrane.
Plant J. 2008 Oct;56(1):146-56. doi: 10.1111/j.1365-313X.2008.03578.x. Epub 2008 Jun 28.
6
Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis.
Mol Syst Biol. 2008;4:193. doi: 10.1038/msb.2008.32. Epub 2008 May 6.
7
Preparation of yeast media.
Curr Protoc Mol Biol. 2001 May;Chapter 13:Unit13.1. doi: 10.1002/0471142727.mb1301s23.
8
The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles.
Pflugers Arch. 2009 Jan;457(3):645-55. doi: 10.1007/s00424-008-0457-x. Epub 2008 Jan 29.
9
Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses.
Plant J. 2007 Sep;51(5):931-40. doi: 10.1111/j.1365-313X.2007.03192.x. Epub 2007 Jul 25.
10
Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis.
Mol Cell Proteomics. 2007 Oct;6(10):1711-26. doi: 10.1074/mcp.M700164-MCP200. Epub 2007 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验