Suppr超能文献

矩形介质通道不连续处表面等离子体散射的磁场积分方程分析

Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities.

作者信息

Chremmos Ioannis

机构信息

Microwave and Fiber Optics Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zografos 15780 Athens, Greece.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2010 Jan;27(1):85-94. doi: 10.1364/JOSAA.27.000085.

Abstract

The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.

摘要

通过严格的磁场积分方程方法分析了矩形介质通道不连续处对表面等离激元极化激元(SPP)的散射。散射现象通过磁型标量积分方程来描述,随后基于不连续处内部磁场的傅里叶级数平面波展开,通过全域伽辽金矩量法(MoM)进行处理。格林函数傅里叶变换的使用使得在不连续区域的面积分和沿边界的积分都能解析进行,从而得到一个矩量法矩阵,其元素表示为封闭形式表达式的谱积分。应用诸如柯西留数定理和鞍点法等复分析技术来获得透射和反射SPP模式的振幅以及辐射场模式。通过数值结果,我们研究了传输和反射相对于通道尺寸的波长选择性以及对不连续处折射率变化的敏感性,这对于传感应用很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验