Suppr超能文献

A 类β-内酰胺酶 Toho-1 E166A/R274N/R276N 三突变体的中子衍射研究。

Neutron diffraction studies of a class A beta-lactamase Toho-1 E166A/R274N/R276N triple mutant.

机构信息

Neutron Scattering Science Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA.

出版信息

J Mol Biol. 2010 Mar 5;396(4):1070-80. doi: 10.1016/j.jmb.2009.12.036. Epub 2009 Dec 28.

Abstract

beta-Lactam antibiotics have been used effectively over several decades against many types of bacterial infectious diseases. However, the most common cause of resistance to the beta-lactam antibiotics is the production of beta-lactamase enzymes that inactivate beta-lactams by rapidly hydrolyzing the amide group of the beta-lactam ring. Specifically, the class A extended-spectrum beta-lactamases (ESBLs) and inhibitor-resistant enzymes arose that were capable of hydrolyzing penicillins and the expanded-spectrum cephalosporins and monobactams in resistant bacteria, which lead to treatment problems in many clinical settings. A more complete understanding of the mechanism of catalysis of these ESBL enzymes will impact current antibiotic drug discovery efforts. Here, we describe the neutron structure of the class A, CTX-M-type ESBL Toho-1 E166A/R274N/R276N triple mutant in its apo form, which is the first reported neutron structure of a beta-lactamase enzyme. This neutron structure clearly reveals the active-site protonation states and hydrogen-bonding network of the apo Toho-1 ESBL prior to substrate binding and subsequent acylation. The protonation states of the active-site residues Ser70, Lys73, Ser130, and Lys234 in this neutron structure are consistent with the prediction of a proton transfer pathway from Lys73 to Ser130 that is likely dependent on the conformation of Lys73, which has been hypothesized to be coupled to the protonation state of Glu166 during the acylation reaction. Thus, this neutron structure is in agreement with a proposed mechanism for acylation that identifies Glu166 as the general base for catalysis.

摘要

几十年来,β-内酰胺类抗生素一直被有效地用于治疗多种类型的细菌性传染病。然而,对β-内酰胺类抗生素产生耐药性的最常见原因是产生β-内酰胺酶,这些酶通过快速水解β-内酰胺环的酰胺基团使β-内酰胺类抗生素失活。具体而言,出现了能够水解青霉素和扩展谱头孢菌素以及单环酰胺类抗生素的 A 类扩展谱β-内酰胺酶(ESBLs)和抑制剂抗性酶,这导致在许多临床环境中出现治疗问题。更全面地了解这些 ESBL 酶的催化机制将影响当前抗生素药物发现的努力。在这里,我们描述了 CTX-M 型 ESBL Toho-1 E166A/R274N/R276N 三重突变体在其无配体形式下的 A 类中子结构,这是第一个报道的β-内酰胺酶的中子结构。该中子结构清楚地揭示了apo Toho-1 ESBL 酶在结合底物和随后酰化之前的活性部位质子化状态和氢键网络。该中子结构中活性部位残基 Ser70、Lys73、Ser130 和 Lys234 的质子化状态与从 Lys73 到 Ser130 的质子转移途径的预测一致,该途径可能依赖于 Lys73 的构象,这被假设与酰化反应期间 Glu166 的质子化状态相关。因此,该中子结构与提出的酰化机制一致,该机制将 Glu166 鉴定为催化的通用碱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验