Kumar K M, Lavanya P, Anbarasu Anand, Ramaiah Sudha
a School of Biosciences and Technology, VIT University , Vellore 632014 , Tamil Nadu , India.
J Biomol Struct Dyn. 2014 Dec;32(12):1953-68. doi: 10.1080/07391102.2013.847804. Epub 2013 Nov 21.
Bacterial resistance to β-lactams antibiotics is a serious threat to human health. The most common cause of resistance to the β-lactams is the production of β-lactamase that inactivates β-lactams. Specifically, class A extended-spectrum β-lactamase produced by antibiotic resistant bacteria is capable of hydrolyzing extended-spectrum Cephalosporins and Monobactams. Mutations in class A β-lactamases play a crucial role in substrate and inhibitor specificity. In this present study, the E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant class A β-lactamases are analyzed. Molecular dynamics (MD) simulations are done to understand the consequences of mutations in class A β-lactamases. Root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessibility surface area, hydrogen bond, and essential dynamics analysis results indicate notable loss in stability for mutant class A β-lactamases. MD simulations of native and mutant structures clearly confirm that the substitution of alanine at the position of 166, Asparagine at 274 and 276 causes more flexibility in 3D space. Molecular docking results indicate the mutation in class A β-lactamases which decrease the binding affinity of Cefpirome and Ceftobiprole which are third and fifth generation Cephalosporins, respectively. MD simulation of Ceftobiprole-native and mutant type Class A β-lactamases complexes reveal that E166A/R274N/R276N mutations alter the structure and notable loss in the stability for Ceftobirole-mutant type Class A β-lactamases complexes. Ceftobiprole is currently prescribed for patients with serious bacterial infections; this phenomenon is the probable cause for the effectiveness of Ceftobiprole in controlling bacterial infections.
细菌对β-内酰胺类抗生素的耐药性是对人类健康的严重威胁。对β-内酰胺类抗生素耐药的最常见原因是产生使β-内酰胺失活的β-内酰胺酶。具体而言,抗生素耐药菌产生的A类超广谱β-内酰胺酶能够水解超广谱头孢菌素和单环β-内酰胺类抗生素。A类β-内酰胺酶的突变在底物和抑制剂特异性方面起着关键作用。在本研究中,分析了A类β-内酰胺酶的E166A点突变体、R274N/R276N双突变体和E166A/R274N/R276N三突变体。进行分子动力学(MD)模拟以了解A类β-内酰胺酶突变的后果。均方根偏差、均方根波动、回转半径、溶剂可及表面积、氢键和主成分动力学分析结果表明,突变型A类β-内酰胺酶的稳定性显著降低。天然结构和突变结构的MD模拟清楚地证实,在166位取代丙氨酸、在274和276位取代天冬酰胺会导致三维空间中更大的灵活性。分子对接结果表明,A类β-内酰胺酶中的突变降低了分别为第三代和第五代头孢菌素的头孢匹罗和头孢托罗的结合亲和力。头孢托罗-天然型和突变型A类β-内酰胺酶复合物的MD模拟表明,E166A/R274N/R276N突变改变了结构,并且头孢托罗-突变型A类β-内酰胺酶复合物的稳定性显著降低。头孢托罗目前被开给患有严重细菌感染的患者;这种现象可能是头孢托罗在控制细菌感染方面有效的原因。