Suppr超能文献

不同近交系大鼠呼吸长时程易化的差异表达。

Differential expression of respiratory long-term facilitation among inbred rat strains.

机构信息

Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA.

出版信息

Respir Physiol Neurobiol. 2010 Mar 31;170(3):260-7. doi: 10.1016/j.resp.2009.12.008. Epub 2009 Dec 29.

Abstract

We tested the hypotheses that: (1) long-term facilitation (LTF) following acute intermittent hypoxia (AIH) varies among three inbred rat strains: Fischer 344 (F344), Brown Norway (BN) and Lewis rats and (2) ventral cervical spinal levels of genes important for phrenic LTF (pLTF) vary in association with pLTF magnitude. Lewis and F344, but not BN rats exhibited significant increases in phrenic and hypoglossal burst amplitude 60min post-AIH that were significantly greater than control experiments without AIH, indicating strain differences in phrenic (98%, 56% and 20%, respectively) and hypoglossal LTF (66%, 77% and 5%, respectively). Ventral spinal 5-HT(2A) receptor mRNA and protein levels were higher in F344 and Lewis versus BN, suggesting that higher 5-HT(2A) receptor levels are associated with greater pLTF. More complex relationships were found for 5-HT(7), BDNF and TrkB mRNA. BN had higher 5-HT(7) and TrkB mRNA versus F344; BN and Lewis had higher BDNF mRNA levels versus F344. Genetic variations in serotonergic function may underlie strain differences in AIH-induced pLTF.

摘要

我们检验了以下两个假设

(1)急性间歇性低氧(AIH)后长期易化(LTF)在三个近交系大鼠品系(Fischer 344、Brown Norway 和 Lewis 大鼠)之间存在差异;(2)与 phrenic LTF(pLTF)幅度相关的颈脊髓腹侧水平的基因重要性在 pLTF 方面存在差异。Lewis 和 F344,但不是 BN 大鼠,在 AIH 后 60 分钟时膈神经和舌下神经爆发幅度显著增加,与没有 AIH 的对照实验相比显著增加,表明膈神经(分别为 98%、56%和 20%)和舌下神经 LTF(分别为 66%、77%和 5%)存在品系差异。F344 和 Lewis 大鼠的 5-HT(2A)受体 mRNA 和蛋白水平高于 BN,这表明更高的 5-HT(2A)受体水平与更大的 pLTF 相关。5-HT(7)、BDNF 和 TrkB mRNA 的关系更为复杂。BN 大鼠的 5-HT(7)和 TrkB mRNA 高于 F344;BN 和 Lewis 大鼠的 BDNF mRNA 水平高于 F344。5-羟色胺能功能的遗传变异可能是 AIH 诱导的 pLTF 品系差异的基础。

相似文献

1
Differential expression of respiratory long-term facilitation among inbred rat strains.
Respir Physiol Neurobiol. 2010 Mar 31;170(3):260-7. doi: 10.1016/j.resp.2009.12.008. Epub 2009 Dec 29.
2
Phrenic long-term facilitation after acute intermittent hypoxia requires spinal ERK activation but not TrkB synthesis.
J Appl Physiol (1985). 2012 Oct 15;113(8):1184-93. doi: 10.1152/japplphysiol.00098.2012. Epub 2012 Sep 6.
3
Spinal 5-HT7 receptors and protein kinase A constrain intermittent hypoxia-induced phrenic long-term facilitation.
Neuroscience. 2013 Oct 10;250:632-43. doi: 10.1016/j.neuroscience.2013.06.068. Epub 2013 Jul 11.
4
Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation.
Exp Neurol. 2009 May;217(1):116-23. doi: 10.1016/j.expneurol.2009.01.017. Epub 2009 Feb 3.
5
Spinal adenosine A2(A) receptor inhibition enhances phrenic long term facilitation following acute intermittent hypoxia.
J Physiol. 2010 Jan 1;588(Pt 1):255-66. doi: 10.1113/jphysiol.2009.180075. Epub 2009 Nov 9.
7
Enhancement of phrenic long-term facilitation following repetitive acute intermittent hypoxia is blocked by the glycolytic inhibitor 2-deoxyglucose.
Am J Physiol Regul Integr Comp Physiol. 2018 Jan 1;314(1):R135-R144. doi: 10.1152/ajpregu.00306.2017. Epub 2017 Oct 11.
8
Severe acute intermittent hypoxia elicits phrenic long-term facilitation by a novel adenosine-dependent mechanism.
J Appl Physiol (1985). 2012 May;112(10):1678-88. doi: 10.1152/japplphysiol.00060.2012. Epub 2012 Mar 8.
9
Cervical spinal 5-HT and 5-HT receptors are both necessary for moderate acute intermittent hypoxia-induced phrenic long-term facilitation.
J Appl Physiol (1985). 2019 Aug 1;127(2):432-443. doi: 10.1152/japplphysiol.01113.2018. Epub 2019 Jun 20.
10
Systemic inflammation inhibits serotonin receptor 2-induced phrenic motor facilitation upstream from BDNF/TrkB signaling.
J Neurophysiol. 2018 Jun 1;119(6):2176-2185. doi: 10.1152/jn.00378.2017. Epub 2018 Mar 7.

引用本文的文献

1
APOE4, Age, and Sex Regulate Respiratory Plasticity Elicited by Acute Intermittent Hypercapnic-Hypoxia.
Function (Oxf). 2023 Jun 13;4(5):zqad026. doi: 10.1093/function/zqad026. eCollection 2023.
2
Influence of chronic hypoxia on the hypoxic ventilatory response of juvenile and adult rats.
Respir Physiol Neurobiol. 2023 Oct;316:104118. doi: 10.1016/j.resp.2023.104118. Epub 2023 Jul 17.
3
APOE4, Age & Sex Regulate Respiratory Plasticity Elicited By Acute Intermittent Hypercapnic-Hypoxia.
bioRxiv. 2023 Jan 7:2023.01.06.522840. doi: 10.1101/2023.01.06.522840.
6
Novel Influences of Sex and Genotype on Spinal Plasticity and Recovery of Function after Spinal Cord Injury.
eNeuro. 2021 Mar 9;8(2). doi: 10.1523/ENEURO.0464-20.2021. Print 2021 Mar-Apr.
7
Effects of allergic airway inflammation and chronic intermittent hypoxia on systemic blood pressure.
Am J Physiol Regul Integr Comp Physiol. 2020 Nov 1;319(5):R566-R574. doi: 10.1152/ajpregu.00325.2019. Epub 2020 Sep 9.
8
Intermittent but not sustained moderate hypoxia elicits long-term facilitation of hypoglossal motor output.
Respir Physiol Neurobiol. 2018 Oct;256:15-20. doi: 10.1016/j.resp.2017.10.005. Epub 2017 Oct 23.
9
Enhancement of phrenic long-term facilitation following repetitive acute intermittent hypoxia is blocked by the glycolytic inhibitor 2-deoxyglucose.
Am J Physiol Regul Integr Comp Physiol. 2018 Jan 1;314(1):R135-R144. doi: 10.1152/ajpregu.00306.2017. Epub 2017 Oct 11.
10
Daily acute intermittent hypoxia improves breathing function with acute and chronic spinal injury via distinct mechanisms.
Respir Physiol Neurobiol. 2018 Oct;256:50-57. doi: 10.1016/j.resp.2017.05.004. Epub 2017 May 24.

本文引用的文献

1
Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation.
J Physiol. 2011 Mar 15;589(Pt 6):1397-407. doi: 10.1113/jphysiol.2010.201657. Epub 2011 Jan 17.
2
Spinal adenosine A2(A) receptor inhibition enhances phrenic long term facilitation following acute intermittent hypoxia.
J Physiol. 2010 Jan 1;588(Pt 1):255-66. doi: 10.1113/jphysiol.2009.180075. Epub 2009 Nov 9.
4
Episodic spinal serotonin receptor activation elicits long-lasting phrenic motor facilitation by an NADPH oxidase-dependent mechanism.
J Physiol. 2009 Nov 15;587(Pt 22):5469-81. doi: 10.1113/jphysiol.2009.176982. Epub 2009 Oct 5.
5
Bioaminergic neuromodulation of respiratory rhythm in vitro.
Respir Physiol Neurobiol. 2009 Aug 31;168(1-2):69-75. doi: 10.1016/j.resp.2009.03.011.
6
Daily intermittent hypoxia augments spinal BDNF levels, ERK phosphorylation and respiratory long-term facilitation.
Exp Neurol. 2009 May;217(1):116-23. doi: 10.1016/j.expneurol.2009.01.017. Epub 2009 Feb 3.
7
Reactive oxygen species and respiratory plasticity following intermittent hypoxia.
Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):263-71. doi: 10.1016/j.resp.2008.07.008.
8
Sex steroidal hormones and respiratory control.
Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):213-21. doi: 10.1016/j.resp.2008.06.006.
9
Formation and maintenance of ventilatory long-term facilitation require NMDA but not non-NMDA receptors in awake rats.
J Appl Physiol (1985). 2008 Sep;105(3):942-50. doi: 10.1152/japplphysiol.01274.2006. Epub 2008 Jun 26.
10
Determinants of frequency long-term facilitation following acute intermittent hypoxia in vagotomized rats.
Respir Physiol Neurobiol. 2008 Jun 30;162(1):8-17. doi: 10.1016/j.resp.2008.03.005. Epub 2008 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验