Department of Ecology and Evolution , University of Chicago, Chicago, Illinois 60637, USA.
RNA. 2010 Feb;16(2):290-8. doi: 10.1261/rna.1876210. Epub 2009 Dec 28.
Identification of small nucleolar RNAs (snoRNAs) in genomic sequences has been challenging due to the relative paucity of sequence features. Many current prediction algorithms rely on detection of snoRNA motifs complementary to target sites in snRNAs and rRNAs. However, recent discovery of snoRNAs without apparent targets requires development of alternative prediction methods. We present an approach that combines rule-based filters and a Bayesian Classifier to identify a class of snoRNAs (H/ACA) without requiring target sequence information. It takes advantage of unique attributes of their genomic organization and improved species-specific motif characterization to predict snoRNAs that may otherwise be difficult to discover. Searches in the genomes of Caenorhabditis elegans and the closely related Caenorhabditis briggsae suggest that our method performs well compared to recent benchmark algorithms. Our results illustrate the benefits of training gene discovery engines on features restricted to particular phylogenetic groups and the utility of incorporating diverse data types in gene prediction.
由于序列特征相对较少,因此在基因组序列中识别小核仁 RNA(snoRNAs)具有挑战性。许多当前的预测算法依赖于检测与 snRNA 和 rRNA 中的靶位点互补的 snoRNA 基序。然而,最近发现没有明显靶标的 snoRNAs 需要开发替代的预测方法。我们提出了一种结合基于规则的过滤器和贝叶斯分类器的方法来识别一类 snoRNAs(H/ACA),而无需目标序列信息。它利用了它们基因组组织的独特属性和改进的物种特异性基序特征来预测可能难以发现的 snoRNAs。在秀丽隐杆线虫和密切相关的秀丽新杆线虫的基因组中进行搜索表明,与最近的基准算法相比,我们的方法表现良好。我们的结果说明了在特定进化枝上的特征上训练基因发现引擎的好处,以及在基因预测中纳入不同数据类型的实用性。