Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Chemistry. 2010 Feb 8;16(6):1911-28. doi: 10.1002/chem.200901513.
Electron-transporting organic semiconductors (n-channel) for field-effect transistors (FETs) that are processable in common organic solvents or exhibit air-stable operation are rare. This investigation addresses both these challenges through rational molecular design and computational predictions of n-channel FET air-stability. A series of seven phenacyl-thiophene-based materials are reported incorporating systematic variations in molecular structure and reduction potential. These compounds are as follows: 5,5'''-bis(perfluorophenylcarbonyl)-2,2':5',- 2'':5'',2'''-quaterthiophene (1), 5,5'''-bis(phenacyl)-2,2':5',2'': 5'',2'''-quaterthiophene (2), poly[5,5'''-(perfluorophenac-2-yl)-4',4''-dioctyl-2,2':5',2'':5'',2'''-quaterthiophene) (3), 5,5'''-bis(perfluorophenacyl)-4,4'''-dioctyl-2,2':5',2'':5'',2'''-quaterthiophene (4), 2,7-bis((5-perfluorophenacyl)thiophen-2-yl)-9,10-phenanthrenequinone (5), 2,7-bis[(5-phenacyl)thiophen-2-yl]-9,10-phenanthrenequinone (6), and 2,7-bis(thiophen-2-yl)-9,10-phenanthrenequinone, (7). Optical and electrochemical data reveal that phenacyl functionalization significantly depresses the LUMO energies, and introduction of the quinone fragment results in even greater LUMO stabilization. FET measurements reveal that the films of materials 1, 3, 5, and 6 exhibit n-channel activity. Notably, oligomer 1 exhibits one of the highest mu(e) (up to approximately = 0.3 cm(2) V(-1) s(-1)) values reported to date for a solution-cast organic semiconductor; one of the first n-channel polymers, 3, exhibits mu(e) approximately = 10(-6) cm(2) V(-1) s(-1) in spin-cast films (mu(e)=0.02 cm(2) V(-1) s(-1) for drop-cast 1:3 blend films); and rare air-stable n-channel material 5 exhibits n-channel FET operation with mu(e)=0.015 cm(2) V(-1) s(-1), while maintaining a large I(on:off)=10(6) for a period greater than one year in air. The crystal structures of 1 and 2 reveal close herringbone interplanar pi-stacking distances (3.50 and 3.43 A, respectively), whereas the structure of the model quinone compound, 7, exhibits 3.48 A cofacial pi-stacking in a slipped, donor-acceptor motif.
电子传输有机半导体(n 通道)的场效应晶体管(FET),可在常见的有机溶剂中加工或表现出稳定的空气操作是罕见的。通过合理的分子设计和对 n 通道 FET 空气稳定性的计算预测,本研究解决了这两个挑战。本报告介绍了一系列七种基于苯乙酮-噻吩的材料,这些材料在分子结构和还原电势方面进行了系统的变化。这些化合物如下:5,5'''-双(全氟苯基羰基)-2,2':5',-2'':5'',2'''-四噻吩(1),5,5'''-双(苯乙酮)-2,2':5',2'':5'',2'''-四噻吩(2),聚[5,5'''-(全氟苯乙酮-2-基)-4',4''-二辛基-2,2':5',2'':5'',2'''-四噻吩](3),5,5'''-双(全氟苯乙酮基)-4,4'''-二辛基-2,2':5',2'':5'',2'''-四噻吩(4),2,7-双((5-全氟苯乙酮基)噻吩-2-基)-9,10-菲醌(5),2,7-双[(5-苯乙酮基)噻吩-2-基]-9,10-菲醌(6)和 2,7-双(噻吩-2-基)-9,10-菲醌(7)。光学和电化学数据表明,苯乙酮基的官能化显著降低了 LUMO 能量,而引入醌片段则导致 LUMO 更稳定。FET 测量表明,材料 1、3、5 和 6 的薄膜表现出 n 通道活性。值得注意的是,低聚物 1 表现出迄今为止报道的溶液浇铸有机半导体中最高的 mu(e)(高达约= 0.3 cm(2) V(-1) s(-1))之一;第一个 n 通道聚合物 3 在旋涂薄膜中表现出 mu(e)约为 10(-6) cm(2) V(-1) s(-1)(1:3 滴铸混合物薄膜中的 mu(e)=0.02 cm(2) V(-1) s(-1));而罕见的空气稳定 n 通道材料 5 表现出 n 通道 FET 操作,mu(e)=0.015 cm(2) V(-1) s(-1),同时在空气中保持超过一年的大 I(on:off)=10(6)。1 和 2 的晶体结构显示出紧密的鱼骨状层间π堆积距离(分别为 3.50 和 3.43 A),而模型醌化合物 7 的结构在滑动的供体-受体基序中表现出 3.48 A 的共面 π 堆积。