Teeters J L, Arbib M A
Center for Neural Engineering, Los Angeles, CA 90089-2520.
Biol Cybern. 1991;64(3):197-207. doi: 10.1007/BF00201980.
A model is presented which accounts for many characteristic response properties used to classify anuran ganglion cell types while being consistent with data concerning interneurons. In the model color is ignored and input stimuli are assumed to be only black and white at high contrast. We show that accurate ganglion cell responses are obtained even with simplified receptors and horizontal cells: Receptors are modeled as responding with a step change, while horizontal cells respond only to global changes in intensity brought about by full field illumination changes. A hyperpolarizing and depolarizing bipolar cell are generated by subtracting local receptor and horizontal potentials. Two transient amacrine cells (On and Off) are generated using a high-pass filter like mechanism with a thresholded output which responds to positive going changes in the corresponding bipolar cell potentials. The model shows how a selective combination of bipolar and amacrine channels can account for many of the response properties used to classify the anuran ganglion cell types (class-0 through 4) and makes several experimental predictions.