Suppr超能文献

运动后纯种马骨骼肌的转录适应性突出了导致肌肉肥大的分子机制。

Transcriptional adaptations following exercise in thoroughbred horse skeletal muscle highlights molecular mechanisms that lead to muscle hypertrophy.

机构信息

Animal Genomics Laboratory, UCD School of Agriculture, Food Science and Veterinary Medicine, UCD College of Life Sciences, University College Dublin, Belfield, Dublin 4, Ireland.

出版信息

BMC Genomics. 2009 Dec 30;10:638. doi: 10.1186/1471-2164-10-638.

Abstract

BACKGROUND

Selection for exercise-adapted phenotypes in the Thoroughbred racehorse has provided a valuable model system to understand molecular responses to exercise in skeletal muscle. Exercise stimulates immediate early molecular responses as well as delayed responses during recovery, resulting in a return to homeostasis and enabling long term adaptation. Global mRNA expression during the immediate-response period has not previously been reported in skeletal muscle following exercise in any species. Also, global gene expression changes in equine skeletal muscle following exercise have not been reported. Therefore, to identify novel genes and key regulatory pathways responsible for exercise adaptation we have used equine-specific cDNA microarrays to examine global mRNA expression in skeletal muscle from a cohort of Thoroughbred horses (n = 8) at three time points (before exercise, immediately post-exercise, and four hours post-exercise) following a single bout of treadmill exercise.

RESULTS

Skeletal muscle biopsies were taken from the gluteus medius before (T(0)), immediately after (T(1)) and four hours after (T(2)) exercise. Statistically significant differences in mRNA abundance between time points (T(0) vs T(1) and T(0) vs T(2)) were determined using the empirical Bayes moderated t-test in the Bioconductor package Linear Models for Microarray Data (LIMMA) and the expression of a select panel of genes was validated using real time quantitative reverse transcription PCR (qRT-PCR). While only two genes had increased expression at T(1) (P < 0.05), by T(2) 932 genes had increased (P < 0.05) and 562 genes had decreased expression (P < 0.05). Functional analysis of genes differentially expressed during the recovery phase (T(2)) revealed an over-representation of genes localized to the actin cytoskeleton and with functions in the MAPK signalling, focal adhesion, insulin signalling, mTOR signaling, p53 signaling and Type II diabetes mellitus pathways. At T(1), using a less stringent statistical approach, we observed an over-representation of genes involved in the stress response, metabolism and intracellular signaling. These findings suggest that protein synthesis, mechanosensation and muscle remodeling contribute to skeletal muscle adaptation towards improved integrity and hypertrophy.

CONCLUSIONS

This is the first study to characterize global mRNA expression profiles in equine skeletal muscle using an equine-specific microarray platform. Here we reveal novel genes and mechanisms that are temporally expressed following exercise providing new knowledge about the early and late molecular responses to exercise in the equine skeletal muscle transcriptome.

摘要

背景

在纯血马的运动适应表型选择中,提供了一个有价值的模型系统来了解骨骼肌对运动的分子反应。运动刺激即时早期的分子反应以及恢复期间的延迟反应,导致恢复到体内平衡并实现长期适应。以前在任何物种的运动后,骨骼肌中都没有报道过即时反应期间的整体 mRNA 表达。此外,也没有报道过运动后马骨骼肌的整体基因表达变化。因此,为了确定负责运动适应的新基因和关键调节途径,我们使用马特异性 cDNA 微阵列检查了来自一群纯血马(n = 8)在跑步机运动后三个时间点(运动前(T(0))、运动后即刻(T(1))和运动后 4 小时(T(2)))的骨骼肌中的整体 mRNA 表达。

结果

在运动前(T(0))、运动后即刻(T(1))和运动后 4 小时(T(2))时,从臀中肌采集骨骼肌活检。使用经验贝叶斯调节 t 检验(Bioconductor 包 Linear Models for Microarray Data(LIMMA)中的)确定时间点之间(T(0)与 T(1)和 T(0)与 T(2))mRNA 丰度的统计学差异,使用实时定量逆转录 PCR(qRT-PCR)验证了一组选定基因的表达。虽然只有两个基因在 T(1)时表达增加(P < 0.05),但到 T(2)时,有 932 个基因表达增加(P < 0.05),562 个基因表达减少(P < 0.05)。恢复阶段(T(2))差异表达基因的功能分析显示,肌动蛋白细胞骨架定位和 MAPK 信号、焦点粘附、胰岛素信号、mTOR 信号、p53 信号和 II 型糖尿病途径中功能的基因过度表达。在 T(1)时,使用较不严格的统计方法,我们观察到应激反应、代谢和细胞内信号转导中涉及的基因的过度表达。这些发现表明,蛋白质合成、机械感觉和肌肉重塑有助于骨骼肌适应,改善完整性和肥大。

结论

这是首次使用马特异性微阵列平台描述马骨骼肌中整体 mRNA 表达谱的研究。在这里,我们揭示了新的基因和机制,这些基因和机制在运动后按时间表达,为马骨骼肌转录组中运动的早期和晚期分子反应提供了新的知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/956b/2812474/eac2968953cf/1471-2164-10-638-1.jpg

相似文献

4
Alterations in oxidative gene expression in equine skeletal muscle following exercise and training.
Physiol Genomics. 2010 Jan 8;40(2):83-93. doi: 10.1152/physiolgenomics.00041.2009. Epub 2009 Oct 27.
5
PGC-1α encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise.
Anim Genet. 2012 Apr;43(2):153-62. doi: 10.1111/j.1365-2052.2011.02238.x. Epub 2011 Sep 21.
7
Gene expression profiling in equine muscle tissues using mouse cDNA microarrays.
Equine Vet J Suppl. 2006 Aug(36):359-64. doi: 10.1111/j.2042-3306.2006.tb05569.x.
8
Exercise-induced modification of the skeletal muscle transcriptome in Arabian horses.
Physiol Genomics. 2017 Jun 1;49(6):318-326. doi: 10.1152/physiolgenomics.00130.2016. Epub 2017 Apr 28.
10
Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise.
FASEB J. 2005 Sep;19(11):1498-500. doi: 10.1096/fj.04-3149fje. Epub 2005 Jun 28.

引用本文的文献

3
Blood-Based Whole-Genome Methylation Analysis of Yili Horses Pre- and Post-Racing.
Animals (Basel). 2025 Jan 24;15(3):326. doi: 10.3390/ani15030326.
5
Common protein-coding variants influence the racing phenotype in galloping racehorse breeds.
Commun Biol. 2022 Dec 13;5(1):1320. doi: 10.1038/s42003-022-04206-x.
7
Metabolomic Response of Equine Skeletal Muscle to Acute Fatiguing Exercise and Training.
Front Physiol. 2020 Feb 18;11:110. doi: 10.3389/fphys.2020.00110. eCollection 2020.
9
Proteome and transcriptome profiling of equine myofibrillar myopathy identifies diminished peroxiredoxin 6 and altered cysteine metabolic pathways.
Physiol Genomics. 2018 Dec 1;50(12):1036-1050. doi: 10.1152/physiolgenomics.00044.2018. Epub 2018 Oct 5.
10
Detecting the Population Structure and Scanning for Signatures of Selection in Horses () From Whole-Genome Sequencing Data.
Evol Bioinform Online. 2018 Jun 4;14:1176934318775106. doi: 10.1177/1176934318775106. eCollection 2018.

本文引用的文献

1
Alterations in oxidative gene expression in equine skeletal muscle following exercise and training.
Physiol Genomics. 2010 Jan 8;40(2):83-93. doi: 10.1152/physiolgenomics.00041.2009. Epub 2009 Oct 27.
2
A genome scan for positive selection in thoroughbred horses.
PLoS One. 2009 Jun 2;4(6):e5767. doi: 10.1371/journal.pone.0005767.
3
Focal adhesion kinase is a load-dependent governor of the slow contractile and oxidative muscle phenotype.
J Physiol. 2009 Jul 15;587(Pt 14):3703-17. doi: 10.1113/jphysiol.2009.171355. Epub 2009 May 26.
4
The many ways to regulate glucose transporter 4.
Appl Physiol Nutr Metab. 2009 Jun;34(3):481-7. doi: 10.1139/H09-047.
5
Changes in muscle mass with mechanical load: possible cellular mechanisms.
Appl Physiol Nutr Metab. 2009 Jun;34(3):328-35. doi: 10.1139/H09-010.
7
Mechano-transduction to muscle protein synthesis is modulated by FAK.
Eur J Appl Physiol. 2009 Jun;106(3):389-98. doi: 10.1007/s00421-009-1032-7. Epub 2009 Mar 18.
8
Hypoxia stimulates via separate pathways ERK phosphorylation and NF-kappaB activation in skeletal muscle cells in primary culture.
J Appl Physiol (1985). 2009 Apr;106(4):1301-10. doi: 10.1152/japplphysiol.91224.2008. Epub 2009 Jan 29.
10
Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle.
J Appl Physiol (1985). 2009 Mar;106(3):929-34. doi: 10.1152/japplphysiol.90880.2008. Epub 2008 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验