Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 3344, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark.
BMC Med Res Methodol. 2009 Dec 30;9:86. doi: 10.1186/1471-2288-9-86.
There is increasing awareness that meta-analyses require a sufficiently large information size to detect or reject an anticipated intervention effect. The required information size in a meta-analysis may be calculated from an anticipated a priori intervention effect or from an intervention effect suggested by trials with low-risk of bias.
Information size calculations need to consider the total model variance in a meta-analysis to control type I and type II errors. Here, we derive an adjusting factor for the required information size under any random-effects model meta-analysis.
We devise a measure of diversity (D2) in a meta-analysis, which is the relative variance reduction when the meta-analysis model is changed from a random-effects into a fixed-effect model. D2 is the percentage that the between-trial variability constitutes of the sum of the between-trial variability and a sampling error estimate considering the required information size. D2 is different from the intuitively obvious adjusting factor based on the common quantification of heterogeneity, the inconsistency (I2), which may underestimate the required information size. Thus, D2 and I2 are compared and interpreted using several simulations and clinical examples. In addition we show mathematically that diversity is equal to or greater than inconsistency, that is D2 >or= I2, for all meta-analyses.
We conclude that D2 seems a better alternative than I2 to consider model variation in any random-effects meta-analysis despite the choice of the between trial variance estimator that constitutes the model. Furthermore, D2 can readily adjust the required information size in any random-effects model meta-analysis.
人们越来越意识到,荟萃分析需要足够大的信息量来检测或拒绝预期的干预效果。荟萃分析所需的信息量可以根据预期的先验干预效果或低偏倚风险试验提出的干预效果来计算。
信息量的计算需要考虑荟萃分析中的总模型方差,以控制 I 型和 II 型错误。在这里,我们为任何随机效应模型荟萃分析推导了所需信息量的调整因子。
我们设计了一种荟萃分析中的多样性(D2)度量,即当荟萃分析模型从随机效应模型变为固定效应模型时的相对方差减少。D2 是当考虑所需信息量时,试验间变异性在荟萃分析模型中所占的百分比。D2 与基于异质性常见量化的直观明显调整因子不一致性(I2)不同,后者可能低估了所需信息量。因此,使用多个模拟和临床示例比较和解释了 D2 和 I2。此外,我们还从数学上证明,对于所有荟萃分析,多样性等于或大于不一致性,即 D2≥I2。
我们的结论是,尽管构成模型的试验间方差估计值不同,但 D2 似乎是任何随机效应荟萃分析中考虑模型变化的更好选择,而不是使用 I2。此外,D2 可以很容易地调整任何随机效应模型荟萃分析中的所需信息量。