Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Harbin 150080, PR China.
J Hazard Mater. 2010 Apr 15;176(1-3):139-45. doi: 10.1016/j.jhazmat.2009.11.008. Epub 2009 Nov 10.
Si-doped and un-doped nanocrystalline TiO(2) samples have been synthesized by simple one-pot water-organic two-phase separated hydrolysis-solvothermal (HST) processes, and characterized by XRD, BET, TEM, FT-IR, DRS and surface photovoltage techniques. The effects of the solvothermal temperature and Si doping on the anatase thermal stability, and on the photocatalytic activity for degrading rhodamine B were investigated in detail. The results show that, as the solvothermal temperature rises, the crystallinity and thermal stability of the resulting nano-sized anatase TiO(2) gradually increase. Noticeably, the as-prepared TiO(2) obtained at appropriate solvothermal temperature (160 degrees C) exhibits high photocatalytic activity. Moreover, although Si doping does not improve the photocatalytic activity of the as-prepared anatase TiO(2), it greatly enhances the anatase thermal stability and inhibits crystallite growth during the process of post-thermal treatment. Interestingly, the Si-doped TiO(2) post-treated at high temperature displays much higher photocatalytic activity than commercial P25 TiO(2). It is clearly demonstrated that the joint effects of high anatase crystallinity and large surface area lead to high photocatalytic activity. This work provides a simple and effective strategy for the synthesis of high-performance TiO(2)-based functional nanomaterials.
掺硅和未掺硅的纳米晶 TiO(2) 样品通过简单的水-有机两相分离水解-溶剂热(HST)工艺合成,并通过 XRD、BET、TEM、FT-IR、DRS 和表面光电压技术进行了表征。详细研究了溶剂热温度和 Si 掺杂对锐钛矿热稳定性以及对罗丹明 B 降解光催化活性的影响。结果表明,随着溶剂热温度的升高,所得纳米锐钛矿 TiO(2) 的结晶度和热稳定性逐渐提高。值得注意的是,在适当的溶剂热温度(160°C)下获得的 TiO(2) 表现出高的光催化活性。此外,尽管 Si 掺杂不会提高所制备的锐钛矿 TiO(2)的光催化活性,但它大大增强了锐钛矿的热稳定性,并抑制了后热处理过程中的晶粒生长。有趣的是,高温后处理的掺硅 TiO(2)显示出比商业 P25 TiO(2) 更高的光催化活性。这清楚地表明,高锐钛矿结晶度和大表面积的共同作用导致了高的光催化活性。这项工作为高性能 TiO(2)基功能纳米材料的合成提供了一种简单有效的策略。