Key Laboratory of Functional Inorganic Materials Chemistry, Heilongjiang University, Ministry of Education, School of Chemistry and Materials Science, Harbin 150080, PR China.
J Hazard Mater. 2009 Dec 30;172(2-3):1168-74. doi: 10.1016/j.jhazmat.2009.07.120. Epub 2009 Aug 4.
In this paper, the Degussa P25 TiO(2) (P-TiO(2)) is modified by the post-treatment with the phosphorous acid, and the resulting samples are also characterized by X-ray Powder Diffraction (XRD), Raman spectra (Raman), Brunauer-Emmett-Teller (BET) surface area analyzer, Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectra (FT-IR), X-ray Photoelectron Spectroscopy (XPS), Ultraviolet-Visible Diffuse Reflectance Spectra (UV-vis DRS) and Surface Photovoltage Spectroscopy (SPS). The effects of surface-modification on the thermal stability and photocatalytic activity of the P-TiO(2) are investigated in detail. The results show that the surface-modification enhances the thermal stability of P-TiO(2), even still with a main anatase phase after thermal treatment at 900 degrees C, which is close related to the inhibition effects of the PO(4)(3-) groups on the surface mass diffusion as well as the directing connections of P-TiO(2) nanoparticles. Interestingly, the modified P-TiO(2) by thermal treatment at 700 and 800 degrees C can exhibit much higher photocatalytic activity than un-modified ones. The reasons for the activity enhancement are involved with the enhanced anatase thermal stability, consequently improving photoinduced charge separation rate, and still keeping large surface area and a certain amount of surface hydroxyl groups.
在本文中,Degussa P25 TiO(2)(P-TiO(2))通过用膦酸进行后处理进行改性,并且所得样品还通过 X 射线粉末衍射(XRD)、拉曼光谱(Raman)、Brunauer-Emmett-Teller(BET)表面积分析仪、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、X 射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-vis DRS)和表面光电压光谱(SPS)进行表征。详细研究了表面改性对 P-TiO(2)的热稳定性和光催化活性的影响。结果表明,表面改性增强了 P-TiO(2)的热稳定性,即使在 900°C 热处理后仍具有主要的锐钛矿相,这与 PO(4)(3-)基团对表面质量扩散的抑制作用以及 P-TiO(2)纳米颗粒的定向连接密切相关。有趣的是,经 700 和 800°C 热处理改性的 P-TiO(2)比未经改性的 P-TiO(2)表现出更高的光催化活性。活性增强的原因涉及锐钛矿热稳定性的增强,从而提高光诱导电荷分离速率,并且仍保持较大的表面积和一定数量的表面羟基。