Suppr超能文献

声门下核斩波和起始神经元对周期性刺激的反应中的锁模尖峰序列。

Mode-locked spike trains in responses of ventral cochlear nucleus chopper and onset neurons to periodic stimuli.

机构信息

School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.

出版信息

J Neurophysiol. 2010 Mar;103(3):1226-37. doi: 10.1152/jn.00070.2009. Epub 2009 Dec 30.

Abstract

We report evidence of mode-locking to the envelope of a periodic stimulus in chopper units of the ventral cochlear nucleus (VCN). Mode-locking is a generalized description of how responses in periodically forced nonlinear systems can be closely linked to the input envelope, while showing temporal patterns of higher order than seen during pure phase-locking. Re-analyzing a previously unpublished dataset in response to amplitude modulated tones, we find that of 55% of cells (6/11) demonstrated stochastic mode-locking in response to sinusoidally amplitude modulated (SAM) pure tones at 50% modulation depth. At 100% modulation depth SAM, most units (3/4) showed mode-locking. We use interspike interval (ISI) scattergrams to unravel the temporal structure present in chopper mode-locked responses. These responses compared well to a leaky integrate-and-fire model (LIF) model of chopper units. Thus the timing of spikes in chopper unit responses to periodic stimuli can be understood in terms of the complex dynamics of periodically forced nonlinear systems. A larger set of onset (33) and chopper units (24) of the VCN also shows mode-locked responses to steady-state vowels and cosine-phase harmonic complexes. However, while 80% of chopper responses to complex stimuli meet our criterion for the presence of mode-locking, only 40% of onset cells show similar complex-modes of spike patterns. We found a correlation between a unit's regularity and its tendency to display mode-locked spike trains as well as a correlation in the number of spikes per cycle and the presence of complex-modes of spike patterns. These spiking patterns are sensitive to the envelope as well as the fundamental frequency of complex sounds, suggesting that complex cell dynamics may play a role in encoding periodic stimuli and envelopes in the VCN.

摘要

我们报告了在耳蜗腹核(VCN)的斩波器单元中,周期性刺激包络的锁模现象的证据。锁模是对周期性强制非线性系统中响应如何与输入包络紧密相关的广义描述,同时显示出比纯相位锁定期间更高阶的时间模式。重新分析以前未发表的数据,我们发现,在对调幅(AM)纯音的响应中,有 55%的细胞(6/11)表现出随机锁模,调制深度为 50%。在 100%调制深度的 SAM 下,大多数单元(3/4)显示出锁模。我们使用脉冲间隔(ISI)散点图来揭示斩波器锁模响应中的时间结构。这些响应与斩波器单元的泄漏积分和点火(LIF)模型非常吻合。因此,周期性刺激下斩波器单元响应的脉冲时间可以根据周期性强制非线性系统的复杂动力学来理解。VCN 的更大的起始(33)和斩波器单元(24)集合也对稳态元音和余弦相位谐波复合物表现出锁模响应。然而,虽然复杂刺激下 80%的斩波器反应符合我们存在锁模的标准,但只有 40%的起始细胞显示出类似的复杂脉冲模式。我们发现单元的规律性与其显示锁模脉冲序列的倾向之间存在相关性,以及每个周期的脉冲数与复杂脉冲模式的存在之间存在相关性。这些脉冲模式对复杂声音的包络和基频都很敏感,这表明复杂细胞动力学可能在 VCN 中对周期性刺激和包络的编码中起作用。

相似文献

1
Mode-locked spike trains in responses of ventral cochlear nucleus chopper and onset neurons to periodic stimuli.
J Neurophysiol. 2010 Mar;103(3):1226-37. doi: 10.1152/jn.00070.2009. Epub 2009 Dec 30.
3
Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus.
J Physiol. 2013 Jul 1;591(13):3401-19. doi: 10.1113/jphysiol.2013.253062. Epub 2013 Apr 29.
4
Temporal encoding and transmitting of amplitude and frequency modulations in dorsal cochlear nucleus.
Hear Res. 1997 Apr;106(1-2):83-94. doi: 10.1016/s0378-5955(97)00004-x.
5
Responses of ventral cochlear nucleus onset and chopper units as a function of signal bandwidth.
J Neurophysiol. 1996 Feb;75(2):780-94. doi: 10.1152/jn.1996.75.2.780.
6
Dual Coding of Frequency Modulation in the Ventral Cochlear Nucleus.
J Neurosci. 2018 Apr 25;38(17):4123-4137. doi: 10.1523/JNEUROSCI.2107-17.2018. Epub 2018 Mar 29.

引用本文的文献

1
Precise spike-timing information in the brainstem is well aligned with the needs of communication and the perception of environmental sounds.
PLoS Biol. 2025 Jun 16;23(6):e3003213. doi: 10.1371/journal.pbio.3003213. eCollection 2025 Jun.
2
Musical neurodynamics.
Nat Rev Neurosci. 2025 May;26(5):293-307. doi: 10.1038/s41583-025-00915-4. Epub 2025 Mar 18.
3
Local targets of T-stellate cells in the ventral cochlear nucleus.
J Comp Neurol. 2022 Nov;530(16):2820-2834. doi: 10.1002/cne.25378. Epub 2022 Jun 18.
5
Sub-threshold signal encoding in coupled FitzHugh-Nagumo neurons.
Sci Rep. 2018 May 29;8(1):8276. doi: 10.1038/s41598-018-26618-8.
6
Enhancement of phase-locking in rodents. I. An axonal recording study in gerbil.
J Neurophysiol. 2017 Oct 1;118(4):2009-2023. doi: 10.1152/jn.00194.2016. Epub 2017 Jul 12.
7
A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation.
Front Psychol. 2017 May 4;8:666. doi: 10.3389/fpsyg.2017.00666. eCollection 2017.
8
A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties.
Front Comput Neurosci. 2016 Feb 8;10:8. doi: 10.3389/fncom.2016.00008. eCollection 2016.
9
Mathematical Frameworks for Oscillatory Network Dynamics in Neuroscience.
J Math Neurosci. 2016 Dec;6(1):2. doi: 10.1186/s13408-015-0033-6. Epub 2016 Jan 6.
10
Signal Processing in Periodically Forced Gradient Frequency Neural Networks.
Front Comput Neurosci. 2015 Dec 24;9:152. doi: 10.3389/fncom.2015.00152. eCollection 2015.

本文引用的文献

1
Two distinct mechanisms shape the reliability of neural responses.
J Neurophysiol. 2009 May;101(5):2239-51. doi: 10.1152/jn.90711.2008. Epub 2009 Feb 4.
2
Statistical analyses of temporal information in auditory brainstem responses to tones in noise: correlation index and spike-distance metric.
J Assoc Res Otolaryngol. 2008 Sep;9(3):373-87. doi: 10.1007/s10162-008-0129-8. Epub 2008 Jun 6.
3
Cortical pyramidal cells as non-linear oscillators: experiment and spike-generation theory.
Brain Res. 2007 Sep 26;1171:122-37. doi: 10.1016/j.brainres.2007.07.028. Epub 2007 Jul 20.
4
Contribution of spike timing to the information transmitted by HVC neurons.
Eur J Neurosci. 2006 Aug;24(4):1091-108. doi: 10.1111/j.1460-9568.2006.04967.x.
5
Bifurcation analysis of mode-locking structure in a Hodgkin-Huxley neuron under sinusoidal current.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Apr;73(4 Pt 1):041924. doi: 10.1103/PhysRevE.73.041924. Epub 2006 Apr 25.
6
Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex.
J Neurosci. 2006 May 3;26(18):4785-95. doi: 10.1523/JNEUROSCI.4330-05.2006.
8
Neural processing of amplitude-modulated sounds.
Physiol Rev. 2004 Apr;84(2):541-77. doi: 10.1152/physrev.00029.2003.
9
Discovering spike patterns in neuronal responses.
J Neurosci. 2004 Mar 24;24(12):2989-3001. doi: 10.1523/JNEUROSCI.4649-03.2004.
10
Noise shaping by interval correlations increases information transfer.
Phys Rev Lett. 2004 Feb 27;92(8):080601. doi: 10.1103/PhysRevLett.92.080601. Epub 2004 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验