Chair of Experimental Cardiovascular Medicine, University of Bristol, Bristol BS2 8HW, United Kingdom.
Arterioscler Thromb Vasc Biol. 2010 Mar;30(3):498-508. doi: 10.1161/ATVBAHA.109.200154. Epub 2009 Dec 30.
The impact of diabetes on the bone marrow (BM) microenvironment was not adequately explored. We investigated whether diabetes induces microvascular remodeling with negative consequence for BM homeostasis.
We found profound structural alterations in BM from mice with type 1 diabetes with depletion of the hematopoietic component and fatty degeneration. Blood flow (fluorescent microspheres) and microvascular density (immunohistochemistry) were remarkably reduced. Flow cytometry verified the depletion of MECA-32(+) endothelial cells. Cultured endothelial cells from BM of diabetic mice showed higher levels of oxidative stress, increased activity of the senescence marker beta-galactosidase, reduced migratory and network-formation capacities, and increased permeability and adhesiveness to BM mononuclear cells. Flow cytometry analysis of lineage(-) c-Kit(+) Sca-1(+) cell distribution along an in vivo Hoechst-33342 dye perfusion gradient documented that diabetes depletes lineage(-) c-Kit(+) Sca-1(+) cells predominantly in the low-perfused part of the marrow. Cell depletion was associated to increased oxidative stress, DNA damage, and activation of apoptosis. Boosting the antioxidative pentose phosphate pathway by benfotiamine supplementation prevented microangiopathy, hypoperfusion, and lineage(-) c-Kit(+) Sca-1(+) cell depletion.
We provide novel evidence for the presence of microangiopathy impinging on the integrity of diabetic BM. These discoveries offer the framework for mechanistic solutions of BM dysfunction in diabetes.
糖尿病对骨髓(BM)微环境的影响尚未得到充分探索。我们研究了糖尿病是否会导致微血管重塑,从而对 BM 稳态产生负面影响。
我们发现 1 型糖尿病小鼠的 BM 存在严重的结构改变,造血成分耗竭和脂肪变性。血流(荧光微球)和微血管密度(免疫组织化学)显著降低。流式细胞术证实 MECA-32(+)内皮细胞耗竭。糖尿病小鼠 BM 培养的内皮细胞表现出更高的氧化应激水平、衰老标志物β-半乳糖苷酶活性增加、迁移和网络形成能力降低,以及对 BM 单核细胞的通透性和粘附性增加。利用活体 Hoechst-33342 染料灌注梯度对谱系(-)c-Kit(+)Sca-1(+)细胞分布的流式细胞术分析表明,糖尿病主要在骨髓低灌注区耗竭谱系(-)c-Kit(+)Sca-1(+)细胞。细胞耗竭与氧化应激增加、DNA 损伤和细胞凋亡激活有关。通过苯磷硫胺补充增强抗氧化戊糖磷酸途径可预防微血管病变、低灌注和谱系(-)c-Kit(+)Sca-1(+)细胞耗竭。
我们为糖尿病 BM 微血管病变影响其完整性提供了新的证据。这些发现为糖尿病中 BM 功能障碍的机制解决方案提供了框架。