Suppr超能文献

贝叶斯方法和最大似然法在具有低于定量限数据的药代动力学模型中的评估。

Evaluations of Bayesian and maximum likelihood methods in PK models with below-quantification-limit data.

作者信息

Yang Shuying, Roger James

机构信息

Clinical Pharmacology Modelling and Simulation, GlaxoSmithKline, Stockley Park West, Middlesex, UK.

出版信息

Pharm Stat. 2010 Oct-Dec;9(4):313-30. doi: 10.1002/pst.400.

Abstract

Pharmacokinetic (PK) data often contain concentration measurements below the quantification limit (BQL). While specific values cannot be assigned to these observations, nevertheless these observed BQL data are informative and generally known to be lower than the lower limit of quantification (LLQ). Setting BQLs as missing data violates the usual missing at random (MAR) assumption applied to the statistical methods, and therefore leads to biased or less precise parameter estimation. By definition, these data lie within the interval [0, LLQ], and can be considered as censored observations. Statistical methods that handle censored data, such as maximum likelihood and Bayesian methods, are thus useful in the modelling of such data sets. The main aim of this work was to investigate the impact of the amount of BQL observations on the bias and precision of parameter estimates in population PK models (non-linear mixed effects models in general) under maximum likelihood method as implemented in SAS and NONMEM, and a Bayesian approach using Markov chain Monte Carlo (MCMC) as applied in WinBUGS. A second aim was to compare these different methods in dealing with BQL or censored data in a practical situation. The evaluation was illustrated by simulation based on a simple PK model, where a number of data sets were simulated from a one-compartment first-order elimination PK model. Several quantification limits were applied to each of the simulated data to generate data sets with certain amounts of BQL data. The average percentage of BQL ranged from 25% to 75%. Their influence on the bias and precision of all population PK model parameters such as clearance and volume distribution under each estimation approach was explored and compared.

摘要

药代动力学(PK)数据通常包含低于定量限(BQL)的浓度测量值。虽然无法为这些观测值赋予具体数值,但这些观测到的BQL数据是有信息价值的,并且通常已知其低于定量下限(LLQ)。将BQL值设为缺失数据违反了应用于统计方法的通常的随机缺失(MAR)假设,因此会导致参数估计有偏差或精度降低。根据定义,这些数据位于区间[0, LLQ]内,可被视为删失观测值。处理删失数据的统计方法,如最大似然法和贝叶斯方法,因此在对此类数据集进行建模时很有用。这项工作的主要目的是研究在SAS和NONMEM中实现的最大似然法以及在WinBUGS中应用的使用马尔可夫链蒙特卡罗(MCMC)的贝叶斯方法下,BQL观测值的数量对群体PK模型(一般为非线性混合效应模型)中参数估计的偏差和精度的影响。第二个目的是在实际情况下比较这些不同方法处理BQL或删失数据的情况。通过基于一个简单PK模型的模拟来说明评估过程,其中从一个一室一级消除PK模型模拟了多个数据集。对每个模拟数据应用了几个定量限,以生成具有一定数量BQL数据的数据集。BQL的平均百分比范围从25%到75%。探讨并比较了它们在每种估计方法下对所有群体PK模型参数(如清除率和体积分布)的偏差和精度的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验