Zhou Huafeng, Hartford Alan, Tsai Kuenhi
Agensys, Inc., Santa Monica, California, USA.
J Biopharm Stat. 2012;22(6):1220-43. doi: 10.1080/10543406.2011.585441.
A Bayesian approach to handling below limit of quantification (BLOQ) pharmacodynamic (PD) data in pharmacokinetic/pharmacodynamic (PK/PD) modeling is described. The inhibitory sigmoid Emax model is used to illustrate the implementation of the Bayesian approach for modeling BLOQ PD data. Details on how to implement this Bayesian approach via the Markov-chain Monte Carlo (MCMC) technique using WinBUGS software are presented. A simulation study was conducted to evaluate the performance of the proposed Bayesian approach and to compare the Bayesian approach with two other ad hoc approaches: replacing BLOQ data with ½LOQ, and ignoring the BLOQ data. The simulation study indicates that the proposed Bayesian approach performs better than the other two ad hoc approaches and should be considered in practice as a complementary tool for BLOQ data analysis. A case study with real PK/PD data is provided to illustrate the application of the Bayesian approach of handling BLOQ PD data in PK/PD modeling.
本文描述了一种在药代动力学/药效学(PK/PD)建模中处理低于定量限(BLOQ)药效学(PD)数据的贝叶斯方法。抑制性S型Emax模型用于说明贝叶斯方法在BLOQ PD数据建模中的应用。文中介绍了如何使用WinBUGS软件通过马尔可夫链蒙特卡罗(MCMC)技术实现这种贝叶斯方法的详细信息。进行了一项模拟研究,以评估所提出的贝叶斯方法的性能,并将其与另外两种临时方法进行比较:用1/2定量限替代BLOQ数据,以及忽略BLOQ数据。模拟研究表明,所提出的贝叶斯方法比其他两种临时方法表现更好,在实际中应被视为BLOQ数据分析的一种补充工具。提供了一个使用真实PK/PD数据的案例研究,以说明贝叶斯方法在PK/PD建模中处理BLOQ PD数据的应用。