Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
Plant Physiol. 2010 Mar;152(3):1197-208. doi: 10.1104/pp.109.151456. Epub 2009 Dec 31.
The biosynthesis of the tetracyclic diterpene ent-kaurene is a critical step in the general (primary) metabolism of gibberellin hormones. ent-Kaurene is formed by a two-step cyclization of geranylgeranyl diphosphate via the intermediate ent-copalyl diphosphate. In a lower land plant, the moss Physcomitrella patens, a single bifunctional diterpene synthase (diTPS) catalyzes both steps. In contrast, in angiosperms, the two consecutive cyclizations are catalyzed by two distinct monofunctional enzymes, ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS). The enzyme, or enzymes, responsible for ent-kaurene biosynthesis in gymnosperms has been elusive. However, several bifunctional diTPS of specialized (secondary) metabolism have previously been characterized in gymnosperms, and all known diTPSs for resin acid biosynthesis in conifers are bifunctional. To further understand the evolution of ent-kaurene biosynthesis as well as the evolution of general and specialized diterpenoid metabolisms in gymnosperms, we set out to determine whether conifers use a single bifunctional diTPS or two monofunctional diTPSs in the ent-kaurene pathway. Using a combination of expressed sequence tag, full-length cDNA, genomic DNA, and targeted bacterial artificial chromosome sequencing, we identified two candidate CPS and KS genes from white spruce (Picea glauca) and their orthologs in Sitka spruce (Picea sitchensis). Functional characterization of the recombinant enzymes established that ent-kaurene biosynthesis in white spruce is catalyzed by two monofunctional diTPSs, PgCPS and PgKS. Comparative analysis of gene structures and enzyme functions highlights the molecular evolution of these diTPSs as conserved between gymnosperms and angiosperms. In contrast, diTPSs for specialized metabolism have evolved differently in angiosperms and gymnosperms.
四环二萜ent-贝壳杉烯的生物合成是赤霉素激素一般(初级)代谢中的关键步骤。ent-贝壳杉烯通过香叶基香叶基二磷酸通过中间物 ent-贝壳杉烯二磷酸形成两步环化。在一种低地植物,苔藓 Physcomitrella patens 中,单一的双功能二萜合酶(diTPS)催化这两个步骤。相比之下,在被子植物中,两个连续的环化由两个不同的单功能酶,ent-贝壳杉烯二磷酸合酶(CPS)和 ent-贝壳杉烯合酶(KS)催化。裸子植物中负责 ent-贝壳杉烯生物合成的酶或酶一直难以捉摸。然而,以前在裸子植物中已经鉴定出几种专门的(次生)代谢的双功能 diTPS,并且所有已知的松柏树脂酸生物合成的 diTPS 都是双功能的。为了进一步了解 ent-贝壳杉烯生物合成的进化以及裸子植物一般和专门的二萜类代谢物的进化,我们着手确定针叶树在 ent-贝壳杉烯途径中是否使用单一的双功能 diTPS 或两个单功能 diTPS。我们使用表达序列标签、全长 cDNA、基因组 DNA 和靶向细菌人工染色体测序的组合,从白云杉(Picea glauca)中鉴定出两个候选 CPS 和 KS 基因及其在西特卡云杉(Picea sitchensis)中的同源物。重组酶的功能表征确立了白云杉中的 ent-贝壳杉烯生物合成由两个单功能 diTPS,PgCPS 和 PgKS 催化。基因结构和酶功能的比较分析突出了这些 diTPS 在被子植物和裸子植物之间的分子进化。相比之下,专门代谢物的 diTPS 在被子植物和裸子植物中的进化方式不同。