Fakultät für Angewandte Naturwissenschaften, Universität Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
J Struct Biol. 2010 May;170(2):413-9. doi: 10.1016/j.jsb.2009.12.027. Epub 2010 Jan 4.
Major ampullate silk fibers of orb web-weaving spiders have impressive mechanical properties due to the fact that the underlying proteins partially fold into helical/amorphous structures, yielding relatively elastic matrices that are toughened by anisotropic nanoparticulate inclusions (formed from stacks of beta-sheets of the same proteins). In vivo the transition from soluble protein to solid fibers involves a combination of chemical and mechanical stimuli (such as ion exchange, extraction of water and shear forces). Here we elucidate the effects of such stimuli on the in vitro aggregation of engineered and recombinantly produced major ampullate silk-like proteins (focusing on structure-function relationships with respect to their primary structures), and discuss their relevance to the storage and assembly of spider silk proteins in vivo.
由于蛛丝中基础蛋白质部分折叠成螺旋/无定形结构,从而产生具有一定弹性的基质,基质再由(同种蛋白质的β-折叠片堆叠而成的)各向异性纳米颗粒增强,因此圆网蛛的大壶状丝纤维具有令人印象深刻的机械性能。在活体内,可溶性蛋白转变为固体纤维涉及化学和机械刺激的共同作用(如离子交换、水提取和剪切力)。在这里,我们阐明了这些刺激对工程化和重组生产的大壶状丝类蛋白体外聚集的影响(重点关注与一级结构相关的结构-功能关系),并讨论了它们与蜘蛛丝蛋白在活体内储存和组装的相关性。