Amirsadeghi Armin, Parlato Raffaella, Kenbeek Anna, Gaspar Ana Rita, Oggioni Marta, Lasorsa Alessia, Mukherjee Adrivit, Jaber Malak, Włodarczyk-Biegun Małgorzata K, van der Wel Patrick C A, Kamperman Marleen, Monreal Santiago Guillermo
Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
Solid-state Nuclear Magnetic Resonance, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
Commun Chem. 2025 Aug 28;8(1):264. doi: 10.1038/s42004-025-01634-8.
Spider silks are exceptional biomaterials: biocompatible, biodegradable, and with remarkable mechanical properties. Unfortunately, attempts to replicate them tend to fail due to the difficulty of synthesizing the proteins that constitute them, and to an incomplete understanding of their processing conditions. Here, we report a synthetic system inspired by spider silk, consisting of a synthetic polyelectrolyte with grafted oligoalanine chains. We have used this peptide-polyelectrolyte conjugate to produce complex coacervates in an analogous process to the liquid-liquid phase separation (LLPS) observed during the natural processing of spider silk. We have characterized these coacervates using rheology, tack test, and solid-state NMR spectroscopy, observing α-helixes and β-sheets. These secondary structures crosslink the material, improving its mechanical properties and its processability, for example, for 3D printing. Furthermore, the peptide-based crosslinks cause distinctive behaviours - such as salt-induced aging. Our approach contributes to the fundamental understanding of the role that LLPS and peptide crosslinks play in spider silk, and to the development of new soft materials crosslinked by peptide aggregation.
具有生物相容性、可生物降解,且具备卓越的机械性能。不幸的是,由于合成构成蜘蛛丝的蛋白质存在困难,以及对其加工条件的理解不完整,复制蜘蛛丝的尝试往往以失败告终。在此,我们报告一种受蜘蛛丝启发的合成系统,该系统由接枝了寡聚丙氨酸链的合成聚电解质组成。我们利用这种肽 - 聚电解质共轭物,通过与蜘蛛丝自然加工过程中观察到的液 - 液相分离(LLPS)类似的过程来制备复合凝聚层。我们使用流变学、粘性测试和固态核磁共振光谱对这些凝聚层进行了表征,观察到了α - 螺旋和β - 折叠。这些二级结构使材料交联,改善了其机械性能和可加工性,例如用于3D打印。此外,基于肽的交联会导致独特的行为,如盐诱导老化。我们的方法有助于从根本上理解LLPS和肽交联在蜘蛛丝中所起的作用,并推动由肽聚集交联的新型软材料的开发。