Suppr超能文献

通过大规模共表达分析进行疾病基因特征分析。

Disease gene characterization through large-scale co-expression analysis.

机构信息

Department of Human Genetics, Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA.

出版信息

PLoS One. 2009 Dec 31;4(12):e8491. doi: 10.1371/journal.pone.0008491.

Abstract

BACKGROUND

In the post genome era, a major goal of biology is the identification of specific roles for individual genes. We report a new genomic tool for gene characterization, the UCLA Gene Expression Tool (UGET).

RESULTS

Celsius, the largest co-normalized microarray dataset of Affymetrix based gene expression, was used to calculate the correlation between all possible gene pairs on all platforms, and generate stored indexes in a web searchable format. The size of Celsius makes UGET a powerful gene characterization tool. Using a small seed list of known cartilage-selective genes, UGET extended the list of known genes by identifying 32 new highly cartilage-selective genes. Of these, 7 of 10 tested were validated by qPCR including the novel cartilage-specific genes SDK2 and FLJ41170. In addition, we retrospectively tested UGET and other gene expression based prioritization tools to identify disease-causing genes within known linkage intervals. We first demonstrated this utility with UGET using genetically heterogeneous disorders such as Joubert syndrome, microcephaly, neuropsychiatric disorders and type 2 limb girdle muscular dystrophy (LGMD2) and then compared UGET to other gene expression based prioritization programs which use small but discrete and well annotated datasets. Finally, we observed a significantly higher gene correlation shared between genes in disease networks associated with similar complex or Mendelian disorders.

DISCUSSION

UGET is an invaluable resource for a geneticist that permits the rapid inclusion of expression criteria from one to hundreds of genes in genomic intervals linked to disease. By using thousands of arrays UGET annotates and prioritizes genes better than other tools especially with rare tissue disorders or complex multi-tissue biological processes. This information can be critical in prioritization of candidate genes for sequence analysis.

摘要

背景

在后基因组时代,生物学的主要目标之一是确定单个基因的特定作用。我们报告了一种新的基因特征描述基因组工具,即加州大学洛杉矶分校基因表达工具(UGET)。

结果

使用 Celsius (基于 Affymetrix 的最大共归一化微阵列基因表达数据集)计算所有平台上所有可能基因对之间的相关性,并以可在网络上搜索的格式生成存储索引。Celsius 的大小使 UGET 成为一种强大的基因特征描述工具。使用已知软骨选择性基因的小种子列表,UGET 通过鉴定 32 个新的高度软骨选择性基因扩展了已知基因列表。其中,10 个测试中有 7 个通过 qPCR 得到验证,包括新的软骨特异性基因 SDK2 和 FLJ41170。此外,我们还回顾性地测试了 UGET 和其他基于基因表达的优先级排序工具,以在已知连锁区间内识别致病基因。我们首先使用 UGET 证明了这种用途,例如使用遗传异质性疾病,如 Joubert 综合征、小头症、神经精神疾病和 2 型肢体带肌营养不良症(LGMD2),然后将 UGET 与其他使用小而离散且注释良好的数据集的基于基因表达的优先级排序程序进行了比较。最后,我们观察到与类似复杂或孟德尔疾病相关的疾病网络中的基因之间具有更高的基因相关性。

讨论

UGET 是遗传学家的宝贵资源,它允许快速将一个到数百个与疾病相关的基因组区间中的表达标准纳入基因表达。通过使用数千个数组,UGET 比其他工具更好地注释和优先级排序基因,特别是对于罕见的组织疾病或复杂的多组织生物学过程。在候选基因序列分析的优先级排序中,这些信息可能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b58/2797297/414b4cb6c44f/pone.0008491.g001.jpg

相似文献

1
Disease gene characterization through large-scale co-expression analysis.
PLoS One. 2009 Dec 31;4(12):e8491. doi: 10.1371/journal.pone.0008491.
3
Identification of candidate Purkinje cell-specific markers by gene expression profiling in wild-type and pcd(3J) mice.
Brain Res Mol Brain Res. 2004 Dec 20;132(2):128-45. doi: 10.1016/j.molbrainres.2004.10.015.
5
Conserved co-expression for candidate disease gene prioritization.
BMC Bioinformatics. 2008 Apr 23;9:208. doi: 10.1186/1471-2105-9-208.
6
Arabidopsis Co-expression Tool (ACT): web server tools for microarray-based gene expression analysis.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W504-9. doi: 10.1093/nar/gkl204.
9

引用本文的文献

1
Network-based modelling reveals cell-type enriched patterns of non-coding RNA regulation during human skeletal muscle remodelling.
NAR Mol Med. 2024 Oct 22;1(4):ugae016. doi: 10.1093/narmme/ugae016. eCollection 2024 Oct.
4
Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance.
Am J Hum Genet. 2019 Feb 7;104(2):229-245. doi: 10.1016/j.ajhg.2018.12.009. Epub 2019 Jan 18.
5
Meningioma transcription factors link cell lineage with systemic metabolic cues.
Neuro Oncol. 2018 Sep 3;20(10):1331-1343. doi: 10.1093/neuonc/noy057.
6
Genes uniquely expressed in human growth plate chondrocytes uncover a distinct regulatory network.
BMC Genomics. 2017 Dec 20;18(1):983. doi: 10.1186/s12864-017-4378-y.
7
Cortical gene expression: prognostic value for seizure outcome following temporal lobectomy and amygdalohippocampectomy.
Neurogenetics. 2016 Oct;17(4):211-218. doi: 10.1007/s10048-016-0484-2. Epub 2016 Jun 2.
8
HSP47 and FKBP65 cooperate in the synthesis of type I procollagen.
Hum Mol Genet. 2015 Apr 1;24(7):1918-28. doi: 10.1093/hmg/ddu608. Epub 2014 Dec 15.
9
Harnessing gene expression networks to prioritize candidate epileptic encephalopathy genes.
PLoS One. 2014 Jul 9;9(7):e102079. doi: 10.1371/journal.pone.0102079. eCollection 2014.
10
Orchestration of neurodevelopmental programs by RBFOX1: implications for autism spectrum disorder.
Int Rev Neurobiol. 2013;113:251-67. doi: 10.1016/B978-0-12-418700-9.00008-3.

本文引用的文献

1
Evidence for rare and common genetic risk variants for schizophrenia at protein kinase C, alpha.
Mol Psychiatry. 2010 Nov;15(11):1101-11. doi: 10.1038/mp.2009.96. Epub 2009 Sep 29.
3
ToppGene Suite for gene list enrichment analysis and candidate gene prioritization.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W305-11. doi: 10.1093/nar/gkp427. Epub 2009 May 22.
6
The UCSC Cancer Genomics Browser.
Nat Methods. 2009 Apr;6(4):239-40. doi: 10.1038/nmeth0409-239.
7
9
GeneDistiller--distilling candidate genes from linkage intervals.
PLoS One. 2008;3(12):e3874. doi: 10.1371/journal.pone.0003874. Epub 2008 Dec 5.
10
Limb-girdle muscular dystrophies.
Curr Opin Neurol. 2008 Oct;21(5):576-84. doi: 10.1097/WCO.0b013e32830efdc2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验