Department of Systems Biology and Translational Medicine, College of Medicine, Texas A & M Health Science Center, Temple, TX 76504, USA.
BMC Bioinformatics. 2009 Oct 14;10:332. doi: 10.1186/1471-2105-10-332.
Although expression microarrays have become a standard tool used by biologists, analysis of data produced by microarray experiments may still present challenges. Comparison of data from different platforms, organisms, and labs may involve complicated data processing, and inferring relationships between genes remains difficult.
STARNET 2 is a new web-based tool that allows post hoc visual analysis of correlations that are derived from expression microarray data. STARNET 2 facilitates user discovery of putative gene regulatory networks in a variety of species (human, rat, mouse, chicken, zebrafish, Drosophila, C. elegans, S. cerevisiae, Arabidopsis and rice) by graphing networks of genes that are closely co-expressed across a large heterogeneous set of preselected microarray experiments. For each of the represented organisms, raw microarray data were retrieved from NCBI's Gene Expression Omnibus for a selected Affymetrix platform. All pairwise Pearson correlation coefficients were computed for expression profiles measured on each platform, respectively. These precompiled results were stored in a MySQL database, and supplemented by additional data retrieved from NCBI. A web-based tool allows user-specified queries of the database, centered at a gene of interest. The result of a query includes graphs of correlation networks, graphs of known interactions involving genes and gene products that are present in the correlation networks, and initial statistical analyses. Two analyses may be performed in parallel to compare networks, which is facilitated by the new HEATSEEKER module.
STARNET 2 is a useful tool for developing new hypotheses about regulatory relationships between genes and gene products, and has coverage for 10 species. Interpretation of the correlation networks is supported with a database of previously documented interactions, a test for enrichment of Gene Ontology terms, and heat maps of correlation distances that may be used to compare two networks. The list of genes in a STARNET network may be useful in developing a list of candidate genes to use for the inference of causal networks. The tool is freely available at http://vanburenlab.medicine.tamhsc.edu/starnet2.html, and does not require user registration.
尽管表达微阵列已成为生物学家使用的标准工具,但微阵列实验产生的数据的分析仍可能带来挑战。不同平台、生物体和实验室的数据比较可能涉及复杂的数据处理,并且基因之间的关系推断仍然很困难。
STARNET 2 是一种新的基于网络的工具,允许对表达微阵列数据得出的相关性进行事后可视化分析。STARNET 2 通过绘制在大量预先选择的微阵列实验中密切共表达的基因网络,使用户能够在各种物种(人、大鼠、小鼠、鸡、斑马鱼、果蝇、秀丽隐杆线虫、酿酒酵母、拟南芥和水稻)中发现可能的基因调控网络。对于表示的每个生物体,从 NCBI 的基因表达综合数据库中检索了选定的 Affymetrix 平台的原始微阵列数据。分别计算了在每个平台上测量的表达谱的所有成对 Pearson 相关系数。这些预编译的结果存储在 MySQL 数据库中,并通过从 NCBI 检索到的其他数据进行补充。基于网络的工具允许用户指定对数据库的查询,以感兴趣的基因为中心。查询的结果包括相关性网络的图形、包含在相关性网络中的基因和基因产物的已知相互作用的图形,以及初始统计分析。通过新的 HEATSEEKER 模块,可以并行执行两个分析以比较网络。
STARNET 2 是一种用于开发关于基因和基因产物之间调节关系的新假设的有用工具,并且涵盖了 10 个物种。通过数据库中先前记录的相互作用、对基因本体论术语富集的检验、以及可用于比较两个网络的相关距离热图,支持对相关性网络的解释。STARNET 网络中的基因列表可用于开发候选基因列表,以便用于因果网络的推断。该工具可在 http://vanburenlab.medicine.tamhsc.edu/starnet2.html 上免费获得,并且不需要用户注册。