Dosse Mohammed Bennani, Berge Jos M F
Psychometrika. 2008 Jun;73(2):303-307. doi: 10.1007/s11336-007-9044-x. Epub 2008 Jan 25.
The use of Candecomp to fit scalar products in the context of INDSCAL is based on the assumption that the symmetry of the data matrices involved causes the component matrices to be equal when Candecomp converges. Ten Berge and Kiers gave examples where this assumption is violated for Gramian data matrices. These examples are believed to be local minima. It is now shown that, in the single-component case, the assumption can only be violated at saddle points. Chances of Candecomp converging to a saddle point are small but still nonzero.
在INDSCAL的背景下,使用Candecomp来拟合标量积是基于这样一种假设:当Candecomp收敛时,所涉及数据矩阵的对称性会导致成分矩阵相等。滕伯格和基尔斯给出了一些例子,其中对于Gramian数据矩阵,这一假设不成立。这些例子被认为是局部最小值。现在表明,在单成分情况下,该假设仅在鞍点处不成立。Candecomp收敛到鞍点的可能性很小,但仍然不为零。