Suppr超能文献

多模态神经电位的微功耗 CMOS 集成低噪声放大、滤波和数字化。

Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials.

出版信息

IEEE Trans Biomed Circuits Syst. 2009 Feb;3(1):1-10. doi: 10.1109/TBCAS.2008.2005297. Epub 2009 Jan 6.

Abstract

Electrical activity in the brain spans a wide range of spatial and temporal scales, requiring simultaneous recording of multiple modalities of neurophysiological signals in order to capture various aspects of brain state dynamics. Here, we present a 16-channel neural interface integrated circuit fabricated in a 0.5 mum 3M2P CMOS process for selective digital acquisition of biopotentials across the spectrum of neural signal modalities in the brain, ranging from single spike action potentials to local field potentials (LFP), electrocorticograms (ECoG), and electroencephalograms (EEG). Each channel is composed of a tunable bandwidth, fixed gain front-end amplifier and a programmable gain/resolution continuous-time incremental DeltaSigma analog-to-digital converter (ADC). A two-stage topology for the front-end voltage amplifier with capacitive feedback offers independent tuning of the amplifier bandpass frequency corners, and attains a noise efficiency factor (NEF) of 2.9 at 8.2 kHz bandwidth for spike recording, and a NEF of 3.2 at 140 Hz bandwidth for EEG recording. The amplifier has a measured midband gain of 39.6 dB, frequency response from 0.2 Hz to 8.2 kHz, and an input-referred noise of 1.94 muV rms while drawing 12.2 muA of current from a 3.3 V supply. The lower and higher cutoff frequencies of the bandpass filter are adjustable from 0.2 to 94 Hz and 140 Hz to 8.2 kHz, respectively. At 10-bit resolution, the ADC has an SNDR of 56 dB while consuming 76 muW power. Time-modulation feedback in the ADC offers programmable digital gain (1-4096) for auto-ranging, further improving the dynamic range and linearity of the ADC. Experimental recordings with the system show spike signals in rat somatosensory cortex as well as alpha EEG activity in a human subject.

摘要

大脑中的电活动跨越广泛的时空尺度,需要同时记录多种神经生理信号模式,以捕捉大脑状态动力学的各个方面。在这里,我们展示了一个 16 通道神经接口集成电路,该集成电路采用 0.5 µm 3M2P CMOS 工艺制造,用于选择性地数字化采集大脑中神经信号模式的频谱范围内的生物电势,从单个尖峰动作电位到局部场电位 (LFP)、皮层电图 (ECoG) 和脑电图 (EEG)。每个通道都由一个可调带宽、固定增益前端放大器和一个可编程增益/分辨率连续时间增量 DeltaSigma 模数转换器 (ADC) 组成。前端电压放大器的两级拓扑结构采用电容反馈,可独立调整放大器带通频率拐角,在尖峰记录时实现噪声效率因子 (NEF) 为 2.9,带宽为 8.2 kHz,在 EEG 记录时实现 NEF 为 3.2,带宽为 140 Hz。放大器的中频带宽增益为 39.6 dB,频率响应从 0.2 Hz 到 8.2 kHz,输入参考噪声为 1.94 μV rms,在 3.3 V 电源下消耗 12.2 μA 的电流。带通滤波器的低截止频率和高截止频率分别可调为 0.2 Hz 和 94 Hz、140 Hz 和 8.2 kHz。在 10 位分辨率下,ADC 的 SNR 为 56 dB,同时消耗 76 μW 的功率。ADC 中的时变调制反馈提供可编程数字增益 (1-4096) 用于自动量程,进一步提高了 ADC 的动态范围和线性度。系统的实验记录显示了大鼠感觉皮层中的尖峰信号以及人类受试者中的 alpha EEG 活动。

相似文献

1
Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials.
IEEE Trans Biomed Circuits Syst. 2009 Feb;3(1):1-10. doi: 10.1109/TBCAS.2008.2005297. Epub 2009 Jan 6.
2
From spikes to EEG: integrated multichannel and selective acquisition of neuropotentials.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2741-4. doi: 10.1109/IEMBS.2008.4649769.
3
An energy-efficient micropower neural recording amplifier.
IEEE Trans Biomed Circuits Syst. 2007 Jun;1(2):136-47. doi: 10.1109/TBCAS.2007.907868.
5
A low-power configurable neural recording system for epileptic seizure detection.
IEEE Trans Biomed Circuits Syst. 2013 Aug;7(4):499-512. doi: 10.1109/TBCAS.2012.2228857.
6
Wireless micropower instrumentation for multimodal acquisition of electrical and chemical neural activity.
IEEE Trans Biomed Circuits Syst. 2009 Dec;3(6):388-97. doi: 10.1109/TBCAS.2009.2031877.
7
A 0.5-V multi-channel low-noise readout front-end for portable EEG acquisition.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:837-40. doi: 10.1109/EMBC.2015.7318492.
8
A 16-Channel CMOS Chopper-Stabilized Analog Front-End ECoG Acquisition Circuit for a Closed-Loop Epileptic Seizure Control System.
IEEE Trans Biomed Circuits Syst. 2018 Jun;12(3):543-553. doi: 10.1109/TBCAS.2018.2808415.
9
A low-power programmable neural spike detection channel with embedded calibration and data compression.
IEEE Trans Biomed Circuits Syst. 2012 Apr;6(2):87-100. doi: 10.1109/TBCAS.2012.2187352.
10
A 64-channel neuron recording system.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2862-5. doi: 10.1109/IEMBS.2011.6090790.

引用本文的文献

1
Anesthesia and analgesia for experimental craniotomy in mice and rats: a systematic scoping review comparing the years 2009 and 2019.
Front Neurosci. 2023 May 3;17:1143109. doi: 10.3389/fnins.2023.1143109. eCollection 2023.
2
High-density neural recording system design.
Biomed Eng Lett. 2022 May 30;12(3):251-261. doi: 10.1007/s13534-022-00233-z. eCollection 2022 Aug.
3
Signal Generation, Acquisition, and Processing in Brain Machine Interfaces: A Unified Review.
Front Neurosci. 2021 Sep 13;15:728178. doi: 10.3389/fnins.2021.728178. eCollection 2021.
4
A CMOS Current Steering Neurostimulation Array With Integrated DAC Calibration and Charge Balancing.
IEEE Trans Biomed Circuits Syst. 2017 Apr;11(2):324-335. doi: 10.1109/TBCAS.2016.2609854. Epub 2017 Jan 16.
5
A Bidirectional Neural Interface IC With Chopper Stabilized BioADC Array and Charge Balanced Stimulator.
IEEE Trans Biomed Circuits Syst. 2016 Oct;10(5):990-1002. doi: 10.1109/TBCAS.2016.2614845. Epub 2016 Nov 8.
6
A High Performance Delta-Sigma Modulator for Neurosensing.
Sensors (Basel). 2015 Aug 7;15(8):19466-86. doi: 10.3390/s150819466.
8
Recent advances in neural recording microsystems.
Sensors (Basel). 2011;11(5):4572-97. doi: 10.3390/s110504572. Epub 2011 Apr 27.
9
The Neurochip-2: an autonomous head-fixed computer for recording and stimulating in freely behaving monkeys.
IEEE Trans Neural Syst Rehabil Eng. 2011 Aug;19(4):427-35. doi: 10.1109/TNSRE.2011.2158007. Epub 2011 May 31.

本文引用的文献

1
Low-power circuits for brain-machine interfaces.
IEEE Trans Biomed Circuits Syst. 2008 Sep;2(3):173-83. doi: 10.1109/TBCAS.2008.2003198.
2
An energy-efficient micropower neural recording amplifier.
IEEE Trans Biomed Circuits Syst. 2007 Jun;1(2):136-47. doi: 10.1109/TBCAS.2007.907868.
3
VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing.
IEEE Trans Biomed Circuits Syst. 2007 Mar;1(1):63-72. doi: 10.1109/TBCAS.2007.893176.
4
Predicting movement from multiunit activity.
J Neurosci. 2007 Aug 1;27(31):8387-94. doi: 10.1523/JNEUROSCI.1321-07.2007.
5
Spectral changes in cortical surface potentials during motor movement.
J Neurosci. 2007 Feb 28;27(9):2424-32. doi: 10.1523/JNEUROSCI.3886-06.2007.
7
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.
8
Local field potential spectral tuning in motor cortex during reaching.
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):180-3. doi: 10.1109/TNSRE.2006.875549.
9
Implantable biomimetic microelectronic systems design.
IEEE Eng Med Biol Mag. 2005 Sep-Oct;24(5):66-74. doi: 10.1109/memb.2005.1511502.
10
Wireless multichannel biopotential recording using an integrated FM telemetry circuit.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):263-71. doi: 10.1109/TNSRE.2005.853625.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验