Suppr超能文献

多模态神经电位的微功耗 CMOS 集成低噪声放大、滤波和数字化。

Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials.

出版信息

IEEE Trans Biomed Circuits Syst. 2009 Feb;3(1):1-10. doi: 10.1109/TBCAS.2008.2005297. Epub 2009 Jan 6.

Abstract

Electrical activity in the brain spans a wide range of spatial and temporal scales, requiring simultaneous recording of multiple modalities of neurophysiological signals in order to capture various aspects of brain state dynamics. Here, we present a 16-channel neural interface integrated circuit fabricated in a 0.5 mum 3M2P CMOS process for selective digital acquisition of biopotentials across the spectrum of neural signal modalities in the brain, ranging from single spike action potentials to local field potentials (LFP), electrocorticograms (ECoG), and electroencephalograms (EEG). Each channel is composed of a tunable bandwidth, fixed gain front-end amplifier and a programmable gain/resolution continuous-time incremental DeltaSigma analog-to-digital converter (ADC). A two-stage topology for the front-end voltage amplifier with capacitive feedback offers independent tuning of the amplifier bandpass frequency corners, and attains a noise efficiency factor (NEF) of 2.9 at 8.2 kHz bandwidth for spike recording, and a NEF of 3.2 at 140 Hz bandwidth for EEG recording. The amplifier has a measured midband gain of 39.6 dB, frequency response from 0.2 Hz to 8.2 kHz, and an input-referred noise of 1.94 muV rms while drawing 12.2 muA of current from a 3.3 V supply. The lower and higher cutoff frequencies of the bandpass filter are adjustable from 0.2 to 94 Hz and 140 Hz to 8.2 kHz, respectively. At 10-bit resolution, the ADC has an SNDR of 56 dB while consuming 76 muW power. Time-modulation feedback in the ADC offers programmable digital gain (1-4096) for auto-ranging, further improving the dynamic range and linearity of the ADC. Experimental recordings with the system show spike signals in rat somatosensory cortex as well as alpha EEG activity in a human subject.

摘要

大脑中的电活动跨越广泛的时空尺度,需要同时记录多种神经生理信号模式,以捕捉大脑状态动力学的各个方面。在这里,我们展示了一个 16 通道神经接口集成电路,该集成电路采用 0.5 µm 3M2P CMOS 工艺制造,用于选择性地数字化采集大脑中神经信号模式的频谱范围内的生物电势,从单个尖峰动作电位到局部场电位 (LFP)、皮层电图 (ECoG) 和脑电图 (EEG)。每个通道都由一个可调带宽、固定增益前端放大器和一个可编程增益/分辨率连续时间增量 DeltaSigma 模数转换器 (ADC) 组成。前端电压放大器的两级拓扑结构采用电容反馈,可独立调整放大器带通频率拐角,在尖峰记录时实现噪声效率因子 (NEF) 为 2.9,带宽为 8.2 kHz,在 EEG 记录时实现 NEF 为 3.2,带宽为 140 Hz。放大器的中频带宽增益为 39.6 dB,频率响应从 0.2 Hz 到 8.2 kHz,输入参考噪声为 1.94 μV rms,在 3.3 V 电源下消耗 12.2 μA 的电流。带通滤波器的低截止频率和高截止频率分别可调为 0.2 Hz 和 94 Hz、140 Hz 和 8.2 kHz。在 10 位分辨率下,ADC 的 SNR 为 56 dB,同时消耗 76 μW 的功率。ADC 中的时变调制反馈提供可编程数字增益 (1-4096) 用于自动量程,进一步提高了 ADC 的动态范围和线性度。系统的实验记录显示了大鼠感觉皮层中的尖峰信号以及人类受试者中的 alpha EEG 活动。

相似文献

3
An energy-efficient micropower neural recording amplifier.一种节能型微功耗神经记录放大器。
IEEE Trans Biomed Circuits Syst. 2007 Jun;1(2):136-47. doi: 10.1109/TBCAS.2007.907868.
10
A 64-channel neuron recording system.一个64通道神经元记录系统。
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:2862-5. doi: 10.1109/IEMBS.2011.6090790.

引用本文的文献

2
High-density neural recording system design.高密度神经记录系统设计。
Biomed Eng Lett. 2022 May 30;12(3):251-261. doi: 10.1007/s13534-022-00233-z. eCollection 2022 Aug.
8
Recent advances in neural recording microsystems.神经记录微系统的最新进展。
Sensors (Basel). 2011;11(5):4572-97. doi: 10.3390/s110504572. Epub 2011 Apr 27.

本文引用的文献

1
Low-power circuits for brain-machine interfaces.用于脑机接口的低功耗电路。
IEEE Trans Biomed Circuits Syst. 2008 Sep;2(3):173-83. doi: 10.1109/TBCAS.2008.2003198.
2
An energy-efficient micropower neural recording amplifier.一种节能型微功耗神经记录放大器。
IEEE Trans Biomed Circuits Syst. 2007 Jun;1(2):136-47. doi: 10.1109/TBCAS.2007.907868.
4
Predicting movement from multiunit activity.从多单元活动预测运动。
J Neurosci. 2007 Aug 1;27(31):8387-94. doi: 10.1523/JNEUROSCI.1321-07.2007.
8
Local field potential spectral tuning in motor cortex during reaching.伸手过程中运动皮层的局部场电位频谱调谐
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):180-3. doi: 10.1109/TNSRE.2006.875549.
9
Implantable biomimetic microelectronic systems design.可植入仿生微电子系统设计
IEEE Eng Med Biol Mag. 2005 Sep-Oct;24(5):66-74. doi: 10.1109/memb.2005.1511502.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验