Suppr超能文献

高密度神经记录系统设计。

High-density neural recording system design.

作者信息

Lee Han-Sol, Eom Kyeongho, Park Minju, Ku Seung-Beom, Lee Kwonhong, Lee Hyung-Min

机构信息

School of Electrical Engineering, Korea University, Seoul, South Korea.

出版信息

Biomed Eng Lett. 2022 May 30;12(3):251-261. doi: 10.1007/s13534-022-00233-z. eCollection 2022 Aug.

Abstract

Implantable medical devices capable of monitoring hundreds to thousands of electrodes have received great attention in biomedical applications for understanding of the brain function and to treat brain diseases such as epilepsy, dystonia, and Parkinson's disease. Non-invasive neural recording modalities such as fMRI and EEGs were widely used since the 1960s, but to acquire better information, invasive modalities gained popularity. Since such invasive neural recording system requires high efficiency and low power operation, they have been implemented as integrated circuits. Many techniques have been developed and applied when designing integrated high-density neural recording architecture for better performance, higher efficiency, and lower power consumption. This paper covers general knowledge of neural signals and frequently used neural recording architectures for monitoring neural activity. For neural recording architecture, various neural recording amplifier structures are covered. In addition, several neural processing techniques, which can optimize the neural recording system, are also discussed.

摘要

能够监测数百到数千个电极的可植入医疗设备在生物医学应用中备受关注,用于理解脑功能以及治疗癫痫、肌张力障碍和帕金森病等脑部疾病。自20世纪60年代以来,诸如功能磁共振成像(fMRI)和脑电图(EEGs)等非侵入性神经记录方式被广泛使用,但为了获取更好的信息,侵入性方式开始流行起来。由于这种侵入性神经记录系统需要高效和低功耗运行,它们已被实现为集成电路。在设计集成高密度神经记录架构以实现更好的性能、更高的效率和更低的功耗时,已经开发并应用了许多技术。本文涵盖了神经信号的一般知识以及用于监测神经活动的常用神经记录架构。对于神经记录架构,涵盖了各种神经记录放大器结构。此外,还讨论了几种可以优化神经记录系统的神经处理技术。

相似文献

1
High-density neural recording system design.
Biomed Eng Lett. 2022 May 30;12(3):251-261. doi: 10.1007/s13534-022-00233-z. eCollection 2022 Aug.
3
Implantable neurotechnologies: a review of integrated circuit neural amplifiers.
Med Biol Eng Comput. 2016 Jan;54(1):45-62. doi: 10.1007/s11517-015-1431-3. Epub 2016 Jan 22.
4
Advances in Neural Recording and Stimulation Integrated Circuits.
Front Neurosci. 2021 Aug 6;15:663204. doi: 10.3389/fnins.2021.663204. eCollection 2021.
5
Multi-Channel Neural Recording Implants: A Review.
Sensors (Basel). 2020 Feb 7;20(3):904. doi: 10.3390/s20030904.
6
A closed-loop compressive-sensing-based neural recording system.
J Neural Eng. 2015 Jun;12(3):036005. doi: 10.1088/1741-2560/12/3/036005. Epub 2015 Apr 15.
8
Current-Efficient Preamplifier Architecture for CMRR Sensitive Neural Recording Applications.
IEEE Trans Biomed Circuits Syst. 2018 Jun;12(3):689-699. doi: 10.1109/TBCAS.2018.2826720.
9
Wireless gigabit data telemetry for large-scale neural recording.
IEEE J Biomed Health Inform. 2015 May;19(3):949-57. doi: 10.1109/JBHI.2015.2416202. Epub 2015 Mar 24.
10
Low-power circuits for brain-machine interfaces.
IEEE Trans Biomed Circuits Syst. 2008 Sep;2(3):173-83. doi: 10.1109/TBCAS.2008.2003198.

引用本文的文献

1
A Compact Low-Power Chopper Low Noise Amplifier for High Density Neural Front-Ends.
Sensors (Basel). 2025 Feb 13;25(4):1157. doi: 10.3390/s25041157.
2
Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review.
Front Neurosci. 2024 Apr 15;18:1348434. doi: 10.3389/fnins.2024.1348434. eCollection 2024.

本文引用的文献

1
A 0.19×0.17mm Wireless Neural Recording IC for Motor Prediction with Near-Infrared-Based Power and Data Telemetry.
Dig Tech Pap IEEE Int Solid State Circuits Conf. 2020 Feb;2020:416-418. doi: 10.1109/isscc19947.2020.9063005. Epub 2020 Apr 13.
2
Large-scale neural recordings call for new insights to link brain and behavior.
Nat Neurosci. 2022 Jan;25(1):11-19. doi: 10.1038/s41593-021-00980-9. Epub 2022 Jan 3.
3
High-speed, cortex-wide volumetric recording of neuroactivity at cellular resolution using light beads microscopy.
Nat Methods. 2021 Sep;18(9):1103-1111. doi: 10.1038/s41592-021-01239-8. Epub 2021 Aug 30.
4
Extracellular Recording of Entire Neural Networks Using a Dual-Mode Microelectrode Array With 19584 Electrodes and High SNR.
IEEE J Solid-State Circuits. 2021 Aug;56(8):2466-2475. doi: 10.1109/JSSC.2021.3066043. Epub 2021 Mar 24.
5
A Trimodal Wireless Implantable Neural Interface System-on-Chip.
IEEE Trans Biomed Circuits Syst. 2020 Dec;14(6):1207-1217. doi: 10.1109/TBCAS.2020.3037452. Epub 2020 Dec 31.
7
A Multi-Channel Neural Recording System with Adaptive Electrode Selection for High-Density Neural Interface.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4306-4309. doi: 10.1109/EMBC44109.2020.9175670.
8
A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain-machine interfaces.
Nat Biomed Eng. 2020 Oct;4(10):973-983. doi: 10.1038/s41551-020-0591-0. Epub 2020 Jul 27.
9
Multi-Channel Neural Recording Implants: A Review.
Sensors (Basel). 2020 Feb 7;20(3):904. doi: 10.3390/s20030904.
10
A 3 mm × 3 mm Fully Integrated Wireless Power Receiver and Neural Interface System-on-Chip.
IEEE Trans Biomed Circuits Syst. 2019 Dec;13(6):1736-1746. doi: 10.1109/TBCAS.2019.2943506. Epub 2019 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验