Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
J Am Chem Soc. 2010 Jan 27;132(3):1098-109. doi: 10.1021/ja908851e.
Tryptophan 2,3-dioxygenase (TDO) is an essential enzyme in the pathway of NAD biosynthesis and important for all living organisms. TDO catalyzes oxidative cleavage of the indole ring of L-tryptophan (L-Trp), converting it to N-formylkynurenine (NFK). The crystal structure of TDO shows a dimer of dimer quaternary structure of the homotetrameric protein. The four catalytic sites of the protein, one per subunit, contain a heme that catalyzes the activation and insertion of dioxygen into L-Trp. Because of the alpha(4) structure and because only one type of heme center has been identified in previous spectroscopic studies, the four hemes sites have been presumed to be equivalent. The present work demonstrates that the heme sites of TDO are not equivalent. Quantitative interpretation of EPR and Mössbauer spectroscopic data indicates the presence of two dominant inequivalent heme species in reduced and oxidized states of the enzyme, which is consistent with a dimer of dimer protein quaternary structure that now extends to the electronic properties of the hemes. The electronic properties of the hemes in the reduced state of TDO change significantly upon L-Trp addition, which is attributed to a change in the protonation state of the proximal histidine to the hemes. The binding of O(2) surrogates NO or CO shows two inequivalent heme sites. The heme-NO complexes are 5- and 6-coordinate without L-Trp, and both 6-coordinate with L-Trp. NO can be selectively photodissociated from only one of the heme-NO sites and only in the presence of L-Trp. Cryoreduction of TDO produces a novel diamagnetic heme species, tentatively assigned as a reduced heme-OH complex. This work presents a new description of the heme interactions with the protein, and with the proximal His, which must be considered during the general interpretation of physical data as it relates to kinetics, mechanism, and function of TDO.
色氨酸 2,3-双加氧酶(TDO)是 NAD 生物合成途径中的一种必需酶,对所有生物体都很重要。TDO 催化 L-色氨酸(L-Trp)吲哚环的氧化裂解,将其转化为 N-甲酰犬尿氨酸(NFK)。TDO 的晶体结构显示出同源四聚体蛋白的二聚体-二聚体四级结构。该蛋白的四个催化位点,每个亚基一个,包含一个血红素,血红素催化 L-Trp 中氧的活化和插入。由于α(4)结构,并且由于在以前的光谱研究中只鉴定出一种类型的血红素中心,因此假定这四个血红素位点是等效的。本工作表明 TDO 的血红素位点不等效。EPR 和 Mössbauer 光谱数据的定量解释表明,在酶的还原和氧化状态下存在两种主要的不等效血红素物种,这与现在扩展到血红素电子性质的二聚体-二聚体蛋白四级结构一致。TDO 还原状态下血红素的电子性质在添加 L-Trp 后会发生显著变化,这归因于血红素的近位组氨酸的质子化状态发生变化。O(2)替代物 NO 或 CO 的结合显示出两个不等效的血红素位点。血红素-NO 配合物在没有 L-Trp 的情况下为 5-和 6 配位,并且在存在 L-Trp 的情况下均为 6 配位。只有在存在 L-Trp 的情况下,NO 才能从血红素-NO 中的一个位点选择性地光解。TDO 的低温还原产生一种新型的抗磁性血红素物种,暂定为还原血红素-OH 配合物。这项工作提出了血红素与蛋白质以及与近位 His 相互作用的新描述,在与动力学、机制和 TDO 功能相关的物理数据的一般解释中必须考虑到这一点。