Philipps-University Marburg, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany.
J Bacteriol. 2010 Mar;192(5):1387-94. doi: 10.1128/JB.01423-09. Epub 2010 Jan 4.
Anaerobic ethylbenzene metabolism in the betaproteobacterium Aromatoleum aromaticum is initiated by anaerobic oxidation to acetophenone via (S)-1-phenylethanol. The subsequent carboxylation of acetophenone to benzoylacetate is catalyzed by an acetophenone-induced enzyme, which has been purified and studied. The same enzyme is involved in acetophenone metabolism in the absence of ethylbenzene. Acetophenone carboxylase consists of five subunits with molecular masses of 70, 15, 87, 75, and 34 kDa, whose genes (apcABCDE) form an apparent operon. The enzyme is synthesized at high levels in cells grown on ethylbenzene or acetophenone, but not in cells grown on benzoate. During purification, acetophenone carboxylase dissociates into inactive subcomplexes consisting of the 70-, 15-, 87-, and 75-kDa subunits (apcABCD gene products) and the 34-kDa subunit (apcE gene product), respectively. Acetophenone carboxylase activity was restored by mixing the purified subcomplexes. The enzyme contains 1 Zn(2+) ion per alphabetagammadelta core complex and is dependent on the presence of Mg(2+) or Mn(2+). In spite of the presence of Zn in the enzyme, it is strongly inhibited by Zn(2+) ions. Carboxylation of acetophenone is dependent on ATP hydrolysis to ADP and P(i), exhibiting a stoichiometry of 2 mol ATP per mol acetophenone carboxylated. The enzyme shows uncoupled ATPase activity with either bicarbonate or acetophenone in the absence of the second substrate. These observations indicate that both substrates may be phosphorylated, which is consistent with isotope exchange activity observed with deuterated acetophenone and inhibition by carbamoylphosphate, a structural analogue of carboxyphosphate. A potential mechanism of ATP-dependent acetophenone carboxylation is suggested.
β-变形菌芳香杆菌以(S)-1-苯乙醇为中间产物,通过厌氧氧化作用将乙苯代谢为苯乙酮,从而起始无氧乙基苯代谢。随后,苯乙酮通过一种由苯乙酮诱导的酶被羧化为苯甲酰乙酸,该酶已被纯化并进行了研究。在没有乙苯的情况下,该酶也参与苯乙酮的代谢。苯乙酮羧化酶由 5 个亚基组成,分子量分别为 70、15、87、75 和 34 kDa,其基因(apcABCDE)形成一个明显的操纵子。该酶在细胞以乙苯或苯乙酮为生长基质时高水平合成,但不以苯甲酸为生长基质时不合成。在纯化过程中,苯乙酮羧化酶会解聚为无活性的亚基复合物,分别由 70、15、87 和 75 kDa 的亚基(apcABCD 基因产物)和 34 kDa 的亚基(apcE 基因产物)组成。混合纯化的亚基复合物可恢复苯乙酮羧化酶的活性。该酶每个 αβγδε 核心复合物含有 1 个 Zn(2+) 离子,且依赖于 Mg(2+) 或 Mn(2+) 的存在。尽管酶中存在 Zn,但它会被 Zn(2+) 离子强烈抑制。苯乙酮的羧化作用依赖于 ATP 水解为 ADP 和 P(i),每摩尔苯乙酮羧化需要 2 摩尔 ATP。在没有第二底物的情况下,该酶在碳酸氢盐或苯乙酮存在时表现出不偶联的 ATP 酶活性。这些观察结果表明,两种底物都可能被磷酸化,这与氘代苯乙酮的同位素交换活性和羧基磷酸的结构类似物氨甲酰磷酸的抑制作用一致。提出了一种依赖于 ATP 的苯乙酮羧化的潜在机制。