Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, FL 33620, USA.
IEEE Trans Nanobioscience. 2009 Sep;8(3):210-8. doi: 10.1109/TNB.2009.2029100.
Microarray technology for measuring gene expression values has created significant opportunities for advances in disease diagnosis and individualized treatment planning. However, the random noise introduced by the sample preparation, hybridization, and scanning stages of microarray processing creates significant inaccuracies in the gene expression levels, and hence presents a major barrier in realizing the anticipated advances. Literature presents several methodologies for noise reduction, which can be broadly categorized as: 1) model based approaches for estimation and removal of hybridization noise; 2) approaches using commonly available image denoising tools; and 3) approaches involving the need for control sample(s). In this paper, we present a novel methodology for identifying and removing hybridization and scanning noise from microarray images, using a dual-tree-complex-wavelet-transform-based multiresolution analysis coupled with bivariate shrinkage thresholding. The key features of our methodology include consideration of inherent features and type of noise specific to microarray images, and the ability to work with a single microarray without needing a control. Our methodology is first benchmarked on a fabricated dataset that mimics a real microarray probe dataset. Thereafter, our methodology is tested on datasets obtained from a number of Affymetrix GeneChip human genome HG-U133 Plus 2.0 arrays, processed on HCT-116 cell line at the Microarray Core Facility of Moffitt Cancer Center and Research Institute. The results indicate an appreciable improvement in the quality of the microarray data.
微阵列技术用于测量基因表达值,为疾病诊断和个体化治疗计划的进展创造了重大机会。然而,微阵列处理的样品制备、杂交和扫描阶段引入的随机噪声会导致基因表达水平产生显著的误差,从而成为实现预期进展的主要障碍。文献中提出了几种用于降低噪声的方法,可以大致分为三类:1)基于模型的方法,用于估计和去除杂交噪声;2)使用常用的图像去噪工具的方法;3)涉及需要对照样本的方法。在本文中,我们提出了一种从微阵列图像中识别和去除杂交和扫描噪声的新方法,该方法使用基于双树复小波变换的多分辨率分析和双变量收缩阈值。我们的方法的关键特点包括考虑到微阵列图像特有的固有特征和噪声类型,以及能够在不需要对照的情况下处理单个微阵列的能力。我们的方法首先在模拟真实微阵列探针数据集的合成数据集上进行基准测试。然后,我们的方法在从莫菲特癌症中心和研究所的微阵列核心设施在 HCT-116 细胞系上处理的多个 Affymetrix GeneChip 人类基因组 HG-U133 Plus 2.0 微阵列获得的数据集上进行了测试。结果表明,微阵列数据的质量得到了显著改善。