Suppr超能文献

基于范例的纹理紧凑合成与检索方法。

An examplar-based approach for texture compaction synthesis and retrieval.

机构信息

Institute of Information Science, Academia Sinica, Nankang, Taipei 11529, Taiwan R.O.C.

出版信息

IEEE Trans Image Process. 2010 May;19(5):1307-18. doi: 10.1109/TIP.2009.2039665. Epub 2009 Dec 31.

Abstract

A texture representation should corroborate various functions of a texture. In this paper, we present a novel approach that incorporates texture features for retrieval in an examplar-based texture compaction and synthesis algorithm. The original texture is compacted and compressed in the encoder to obtain a thumbnail texture, which the decoder then synthesizes to obtain a perceptually high quality texture. We propose using a probabilistic framework based on the generalized EM algorithm to analyze the solutions of the approach. Our experiment results show that a high quality synthesized texture can be generated in the decoder from a compressed thumbnail texture. The number of bits in the compressed thumbnail is 400 times lower than that in the original texture and 50 times lower than that needed to compress the original texture using JPEG2000. We also show that, in terms of retrieval and synthesization, our compressed and compacted textures perform better than compressed cropped textures and compressed compacted textures derived by the patchwork algorithm.

摘要

纹理表示应该证实纹理的各种功能。在本文中,我们提出了一种新的方法,该方法将纹理特征纳入基于示例的纹理压缩和合成算法的检索中。在编码器中对原始纹理进行压缩和压缩,以获得缩略图纹理,然后解码器对其进行合成以获得具有高感知质量的纹理。我们建议使用基于广义 EM 算法的概率框架来分析该方法的解决方案。我们的实验结果表明,解码器可以从压缩的缩略图中生成高质量的合成纹理。压缩缩略图中的位数比原始纹理低 400 倍,比使用 JPEG2000 压缩原始纹理所需的位数低 50 倍。我们还表明,就检索和合成而言,我们的压缩和紧凑纹理的性能优于压缩裁剪纹理和基于拼贴算法的压缩紧凑纹理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验