Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
Endocr Rev. 2010 Apr;31(2):139-70. doi: 10.1210/er.2009-0007. Epub 2010 Jan 5.
Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T(3) via transcriptional regulation. Two TR genes, alpha and beta, encode four T(3)-binding receptor isoforms (alpha1, beta1, beta2, and beta3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T(3), transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T(3) target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T(3)-dependent manner. In the absence of T(3), corepressors act to repress the basal transcriptional activity, whereas in the presence of T(3), coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRbeta gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T(3). Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin alphavbeta3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na(+)/H(+) exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T(4) is an agonist at the plasma membrane without conversion to T(3). Tetraiodothyroacetic acid is a T(4) analog that inhibits the actions of T(4) and T(3) at the integrin, including angiogenesis and tumor cell proliferation. T(3) can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin alphavbeta3. Downstream consequences of phosphatidylinositol 3-kinase activation by T(3) include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T(3) and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T(4) and rT(3), but not T(3), is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRalpha1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton.
甲状腺激素的细胞作用可能在内核、质膜、细胞质和线粒体中启动。甲状腺激素核受体 (TR) 通过转录调节介导 T(3) 的生物学活性。两种 TR 基因,alpha 和 beta,编码四种 T(3)结合受体异构体 (alpha1、beta1、beta2 和 beta3)。TR 转录活性受多个水平的调节。除了受 T(3)调节外,转录活性还受位于 T(3)靶基因启动子上的甲状腺激素反应元件的类型、TR 异构体的发育和组织依赖性表达以及一系列核共调节蛋白调节。这些核共调节蛋白以 T(3)依赖的方式调节 TR 的转录活性。在没有 T(3)的情况下,核阻遏物发挥作用抑制基础转录活性,而在存在 T(3)的情况下,共激活物发挥作用激活转录。TR 的关键作用显而易见,因为 TRbeta 基因突变导致甲状腺激素抵抗表现出一系列症状,原因是靶组织对 T(3)的敏感性降低。基因工程敲入小鼠模型还揭示,TR 的突变除了导致甲状腺激素抵抗之外,还可能导致其他异常,包括甲状腺癌、垂体肿瘤、侏儒症和代谢异常。因此,TR 突变的有害影响比以前想象的更为严重。这些基因工程小鼠模型提供了有价值的工具,可以进一步确定未与激素结合的 TR 在体内的分子作用,这可能是甲状腺功能减退症发病机制的基础。未与激素结合的甲状腺激素作用称为非基因组作用。它们可能从整合素 alphavbeta3 上的受体开始,激活 ERK1/2,并最终导致离子转运系统(如 Na(+)/H(+) 交换器)的局部膜作用,或细胞增殖等复杂的细胞事件。整合素在脉管系统细胞和肿瘤细胞上的聚集解释了最近描述的碘甲状腺素的促血管生成作用和甲状腺激素对某些癌细胞(包括神经胶质瘤)的增殖作用。因此,从非基因组开始的激素事件导致 DNA 依赖性效应。l-T(4) 是质膜上的激动剂,无需转化为 T(3)。四碘甲状腺原氨酸是 T(4)的类似物,可抑制整合素上的 T(4)和 T(3)作用,包括血管生成和肿瘤细胞增殖。T(3)可以通过可能起源于细胞质的机制或通过整合素 alphavbeta3 激活磷脂酰肌醇 3-激酶。T(3)激活磷脂酰肌醇 3-激酶的下游后果包括特定基因转录和 Na、K-ATPase 插入质膜以及 ATP 酶活性的调节。甲状腺激素,主要是 T(3)和二碘甲状腺原氨酸,对线粒体能量代谢和细胞骨架有重要影响。激素对线粒体中基本质子渗漏的调节解释了碘甲状腺素引起的产热和细胞耗氧量的很大一部分。甲状腺激素还通过核 TR 的导入异构体作用于线粒体基因组,影响几种线粒体转录因子。T(4)和 rT(3)而不是 T(3)对肌动蛋白聚合的调节对细胞迁移至关重要。这一效应在神经元和神经胶质细胞中得到了突出的证明,对大脑发育很重要。T(4)和 rT(3)而非 T(3)对肌动蛋白聚合的调节对细胞迁移至关重要。这一效应在神经元和神经胶质细胞中得到了突出的证明,对大脑发育很重要。T(4)和 rT(3)而非 T(3)对肌动蛋白聚合的调节对细胞迁移至关重要。这一效应在神经元和神经胶质细胞中得到了突出的证明,对大脑发育很重要。在神经元中包括促进神经突生长的作用。位于核外区的截断 TRalpha1 异构体介导甲状腺激素对细胞骨架的作用。