Lin Hung-Yun, Sun Mingzeng, Tang Heng-Yuan, Lin Cassie, Luidens Mary K, Mousa Shaker A, Incerpi Sandra, Drusano George L, Davis Faith B, Davis Paul J
Ordway Research Institute, Albany, NY 12208, USA.
Am J Physiol Cell Physiol. 2009 May;296(5):C980-91. doi: 10.1152/ajpcell.00305.2008. Epub 2009 Jan 21.
3,5,3'-Triiodo-l-thyronine (T(3)), but not l-thyroxine (T(4)), activated Src kinase and, downstream, phosphatidylinositol 3-kinase (PI3-kinase) by means of an alpha(v)beta(3) integrin receptor on human glioblastoma U-87 MG cells. Although both T(3) and T(4) stimulated extracellular signal-regulated kinase (ERK) 1/2, activated ERK1/2 did not contribute to T(3)-induced Src kinase or PI3-kinase activation, and an inhibitor of PI3-kinase, LY-294002, did not block activation of ERK1/2 by physiological concentrations of T(3) and T(4). Thus the PI3-kinase, Src kinase, and ERK1/2 signaling cascades are parallel pathways in T(3)-treated U-87 MG cells. T(3) and T(4) both caused proliferation of U-87 MG cells; these effects were blocked by the ERK1/2 inhibitor PD-98059 but not by LY-294002. Small-interfering RNA knockdown of PI3-kinase confirmed that PI3-kinase was not involved in the proliferative action of T(3) on U-87 MG cells. PI3-kinase-dependent actions of T(3) in these cells included shuttling of nuclear thyroid hormone receptor-alpha (TRalpha) from cytoplasm to nucleus and accumulation of hypoxia-inducible factor (HIF)-1alpha mRNA; LY-294002 inhibited these actions. Results of studies involving alpha(v)beta(3) receptor antagonists tetraiodothyroacetic acid (tetrac) and Arg-Gly-Asp (RGD) peptide, together with mathematical modeling of the kinetics of displacement of radiolabeled T(3) from the integrin by unlabeled T(3) and by unlabeled T(4), are consistent with the presence of two iodothyronine receptor domains on the integrin. A model proposes that one site binds T(3) exclusively, activates PI3-kinase via Src kinase, and stimulates TRalpha trafficking and HIF-1alpha gene expression. Tetrac and RGD peptide both inhibit T(3) action at this site. The second site binds T(4) and T(3), and, via this receptor, the iodothyronines stimulate ERK1/2-dependent tumor cell proliferation. T(3) action here is inhibited by tetrac alone, but the effect of T(4) is blocked by both tetrac and the RGD peptide.
3,5,3'-三碘-L-甲状腺原氨酸(T(3))而非L-甲状腺素(T(4))通过人胶质母细胞瘤U-87 MG细胞上的α(v)β(3)整合素受体激活Src激酶,进而激活磷脂酰肌醇3-激酶(PI3-激酶)。尽管T(3)和T(4)均能刺激细胞外信号调节激酶(ERK)1/2,但活化的ERK1/2并不参与T(3)诱导的Src激酶或PI3-激酶激活,且PI3-激酶抑制剂LY-294002不会阻断生理浓度的T(3)和T(4)对ERK1/2的激活。因此,在T(3)处理的U-87 MG细胞中,PI3-激酶、Src激酶和ERK1/2信号级联是平行途径。T(3)和T(4)均能引起U-87 MG细胞增殖;这些作用被ERK1/2抑制剂PD-98059阻断,但未被LY-294002阻断。PI3-激酶的小干扰RNA敲低证实PI3-激酶不参与T(3)对U-87 MG细胞的增殖作用。T(3)在这些细胞中的PI3-激酶依赖性作用包括核甲状腺激素受体α(TRα)从细胞质穿梭至细胞核以及缺氧诱导因子(HIF)-1α mRNA的积累;LY-294002抑制这些作用。涉及α(v)β(3)受体拮抗剂四碘甲状腺乙酸(tetrac)和精氨酸-甘氨酸-天冬氨酸(RGD)肽的研究结果,以及未标记的T(3)和未标记的T(4)对放射性标记的T(3)从整合素上置换动力学的数学建模,均与整合素上存在两个碘甲状腺原氨酸受体结构域一致。一个模型提出,一个位点仅结合T(3),通过Src激酶激活PI3-激酶,并刺激TRα转运和HIF-1α基因表达。tetrac和RGD肽均在此位点抑制T(3)的作用。第二个位点结合T(4)和T(3),并且通过该受体,碘甲状腺原氨酸刺激ERK1/2依赖性肿瘤细胞增殖。此处T(3)的作用仅被tetrac抑制,但T(4)的作用被tetrac和RGD肽两者阻断。